[1] | Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124: 755–766. doi: 10.1016/j.cell.2006.02.006
|
[2] | Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH (1988) A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 82: 1560–1566. doi: 10.1172/jci113766
|
[3] | Liu J, Gluzman IY, Drew ME, Goldberg DE (2005) The role of Plasmodium falciparum food vacuole plasmepsins. J Biol Chem 280: 1432–1437. doi: 10.1074/jbc.m409740200
|
[4] | Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, et al. (2009) Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem 52: 852–857. doi: 10.1021/jm8013663
|
[5] | Homewood CA, Neame KD (1974) Malaria and the permeability of the host erythrocyte. Nature 252: 718–719. doi: 10.1038/252718a0
|
[6] | Kutner S, Breuer WV, Ginsburg H, Aley SB, Cabantchik ZI (1985) Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. J Cell Physiol 125: 521–527. doi: 10.1002/jcp.1041250323
|
[7] | Asahi H, Kanazawa T, Kajihara Y, Takahashi K, Takahashi T (1996) Hypoxanthine: a low molecular weight factor essential for growth of erythrocytic Plasmodium falciparum in a serum-free medium. Parasitology 113: 19–23. doi: 10.1017/s0031182000066233
|
[8] | El Bissati K, Zufferey R, Witola WH, Carter NS, Ullman B, et al. (2006) The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA 103: 9286–9291. doi: 10.1073/pnas.0602590103
|
[9] | Saliba KJ, Horner HA, Kirk K (1998) Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem 273: 10190–10195. doi: 10.1074/jbc.273.17.10190
|
[10] | Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, et al. (2011) Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA 108: 1627–1632. doi: 10.1073/pnas.1011560108
|
[11] | Ginsburg H, Kutner S, Zangwil M, Cabantchik ZI (1986) Selectivity properties of pores induced in host erythrocyte membrane by Plasmodium falciparum. Effect of parasite maturation. Biochim Biophys Acta 861: 194–196. doi: 10.1016/0005-2736(86)90418-9
|
[12] | Kang M, Lisk G, Hollingworth S, Baylor SM, Desai SA (2005) Malaria parasites are rapidly killed by dantrolene derivatives specific for the plasmodial surface anion channel. Mol Pharmacol 68: 34–40.
|
[13] | Pillai AD, Pain M, Solomon T, Bokhari AA, Desai SA (2010) A cell-based high-throughput screen validates the plasmodial surface anion channel as an antimalarial target. Mol Pharmacol 77: 724–733. doi: 10.1124/mol.109.062711
|
[14] | Bouyer G, Cueff A, Egee S, Kmiecik J, Maksimova Y, et al. (2011) Erythrocyte peripheral type benzodiazepine receptor/voltage-dependent anion channels are upregulated by Plasmodium falciparum. Blood 118: 2305–2312. doi: 10.1182/blood-2011-01-329300
|
[15] | Desai SA (2005) Open and closed states of the plasmodial surface anion channel. Nanomedicine 1: 58–66. doi: 10.1016/j.nano.2004.11.001
|
[16] | Lisk G, Desai SA (2005) The plasmodial surface anion channel is functionally conserved in divergent malaria parasites. Eukaryot Cell 4: 2153–2159. doi: 10.1128/ec.4.12.2153-2159.2005
|
[17] | Alkhalil A, Hill DA, Desai SA (2007) Babesia and plasmodia increase host erythrocyte permeability through distinct mechanisms. Cell Microbiol 9: 851–860. doi: 10.1111/j.1462-5822.2006.00834.x
|
[18] | Alkhalil A, Cohn JV, Wagner MA, Cabrera JS, Rajapandi T, et al. (2004) Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104: 4279–4286. doi: 10.1182/blood-2004-05-2047
|
[19] | Alkhalil A, Pillai AD, Bokhari AA, Vaidya AB, Desai SA (2009) Complex inheritance of the plasmodial surface anion channel in a Plasmodium falciparum genetic cross. Mol Microbiol 72: 459–469. doi: 10.1111/j.1365-2958.2009.06661.x
|
[20] | Hviid L (2010) The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development. Hum Vaccin 6: 84–89. doi: 10.4161/hv.6.1.9602
|
[21] | Boddey JA, Moritz RL, Simpson RJ, Cowman AF (2009) Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10: 285–299. doi: 10.1111/j.1600-0854.2008.00864.x
|
[22] | van Ooij C, Tamez P, Bhattacharjee S, Hiller NL, Harrison T, et al. (2008) The malaria secretome: from algorithms to essential function in blood stage infection. PLoS Pathog 4: e1000084. doi: 10.1371/journal.ppat.1000084
|
[23] | Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, et al. (2011) Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 145: 665–677. doi: 10.1016/j.cell.2011.05.002
|
[24] | Kaneko O (2007) Erythrocyte invasion: vocabulary and grammar of the Plasmodium rhoptry. Parasitol Int 56: 255–262. doi: 10.1016/j.parint.2007.05.003
|
[25] | Crowley VM, Rovira-Graells N, de Pouplana LR, Cortes A (2011) Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol 80: 391–406. doi: 10.1111/j.1365-2958.2011.07574.x
|
[26] | Trenholme KR, Gardiner DL, Holt DC, Thomas EA, Cowman AF, et al. (2000) clag9: A cytoadherence gene in Plasmodium falciparum essential for binding of parasitized erythrocytes to CD36. Proc Natl Acad Sci USA 97: 4029–4033. doi: 10.1073/pnas.040561197
|
[27] | Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF (2013) Plasmodium rhoptry proteins: why order is important. Trends Parasitol 29: 228–236. doi: 10.1016/j.pt.2013.03.003
|
[28] | Kaneko O, Yim Lim BY, Iriko H, Ling IT, Otsuki H, et al. (2005) Apical expression of three RhopH1/Clag proteins as components of the Plasmodium falciparum RhopH complex. Mol Biochem Parasitol 143: 20–28. doi: 10.1016/j.molbiopara.2005.05.003
|
[29] | Kaneko O, Tsuboi T, Ling IT, Howell S, Shirano M, et al. (2001) The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol 118: 223–231. doi: 10.1016/s0166-6851(01)00391-7
|
[30] | Cortes A, Carret C, Kaneko O, Yim Lim BY, Ivens A, et al. (2007) Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog 3: e107. doi: 10.1371/journal.ppat.0030107
|
[31] | Vincensini L, Fall G, Berry L, Blisnick T, Braun BC (2008) The RhopH complex is transferred to the host cell cytoplasm following red blood cell invasion by Plasmodium falciparum. Mol Biochem Parasitol 160: 81–89. doi: 10.1016/j.molbiopara.2008.04.002
|
[32] | Desai SA (2012) Ion and nutrient uptake by malaria parasite-infected erythrocytes. Cell Microbiol 14: 1003–1009. doi: 10.1111/j.1462-5822.2012.01790.x
|
[33] | King LS, Yasui M, Agre P (2000) Aquaporins in health and disease. Mol Med Today 6: 60–65. doi: 10.1016/s1357-4310(99)01636-6
|
[34] | Kutner S, Breuer WV, Ginsburg H, Cabantchik ZI (1987) On the mode of action of phlorizin as an antimalarial agent in in vitro cultures of Plasmodium falciparum. Biochem Pharmacol 36: 123–129. doi: 10.1016/0006-2952(87)90389-3
|
[35] | Desai SA, Alkhalil A, Kang M, Ashfaq U, Nguyen ML (2005) PSAC-independent phloridzin resistance in Plasmodium falciparum. J Biol Chem 280: 16861–16867. doi: 10.1074/jbc.m414629200
|
[36] | Wagner MA, Andemariam B, Desai SA (2003) A two-compartment model of osmotic lysis in Plasmodium falciparum-infected erythrocytes. Biophys J 84: 116–123. doi: 10.1016/s0006-3495(03)74836-x
|
[37] | Lisk G, Pain M, Gluzman IY, Kambhampati S, Furuya T, et al. (2008) Changes in the plasmodial surface anion channel reduce leupeptin uptake and can confer drug resistance in P. falciparum-infected erythrocytes. Antimicrob Agents Chemother 52: 2346–2354. doi: 10.1128/aac.00057-08
|
[38] | Pillai AD, Nguitragool W, Lyko B, Dolinta K, Butler MM, et al. (2012) Solute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisition. Mol Pharmacol 82: 1104–1114. doi: 10.1124/mol.112.081224
|
[39] | Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890. doi: 10.1093/bioinformatics/btg112
|
[40] | Lyko B, Hammershaimb EA, Nguitragool W, Wellems TE, Desai SA (2012) A high-throughput method to detect Plasmodium falciparum clones in limiting dilution microplates. Malar J 11: 124. doi: 10.1186/1475-2875-11-124
|
[41] | Baumeister S, Winterberg M, Duranton C, Huber SM, Lang F, et al. (2006) Evidence for the involvement of Plasmodium falciparum proteins in the formation of new permeability pathways in the erythrocyte membrane. Mol Microbiol 60: 493–504. doi: 10.1111/j.1365-2958.2006.05112.x
|
[42] | Alexandre JS, Xangsayarath P, Kaewthamasorn M, Yahata K, Sattabongkot J, et al. (2012) Stable allele frequency distribution of the Plasmodium falciparum clag genes encoding components of the high molecular weight rhoptry protein complex. Trop Med Health 40: 71–77. doi: 10.2149/tmh.2012-13
|
[43] | Narahashi Y, Shibuya K, Yanagita M (1968) Studies on proteolytic enzymes (pronase) of Streptomyces griseus K-1. II. Separation of exo- and endopeptidases of pronase. J Biochem 64: 427–437.
|
[44] | Bullen HE, Crabb BS, Gilson PR (2012) Recent insights into the export of PEXEL/HTS-motif containing proteins in Plasmodium parasites. Curr Opin Microbiol 15: 699–704. doi: 10.1016/j.mib.2012.09.008
|
[45] | Li J, Waterhouse RM, Zdobnov EM (2011) A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits. BMC Evol Biol 11: 337. doi: 10.1186/1471-2148-11-337
|
[46] | Sharma P, Wollenberg K, Sellers M, Zainabadi K, Galinsky K, et al. (2013) An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake. J Biol Chem 288: 19429–19440. doi: 10.1074/jbc.m113.468371
|
[47] | Mira-Martinez S, Rovira-Graells N, Crowley VM, Altenhofen LM, Llinas M, et al. (2013) Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites. Cell Microbiol 15: 1913–1923. doi: 10.1111/cmi.12162
|
[48] | Cortes A, Crowley VM, Vaquero A, Voss TS (2012) A view on the role of epigenetics in the biology of malaria parasites. PLoS Pathog 8: e1002943. doi: 10.1371/journal.ppat.1002943
|
[49] | Fiedler F (1987) Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Eur J Biochem 163: 303–312. doi: 10.1111/j.1432-1033.1987.tb10801.x
|
[50] | McConn J, Ku E, Himoe A, Brandt KG, Hess GP (1971) Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. V. Determination of pre-steady state kinetic parameters for specific substrate esters by stopped flow techniques. J Biol Chem 246: 2918–2925.
|
[51] | Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, et al. (2007) Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol 37: 475–482. doi: 10.1016/j.ijpara.2006.12.013
|
[52] | Iriko H, Kaneko O, Otsuki H, Tsuboi T, Su XZ, et al. (2008) Diversity and evolution of the rhoph1/clag multigene family of Plasmodium falciparum. Mol Biochem Parasitol 158: 11–21. doi: 10.1016/j.molbiopara.2007.11.004
|
[53] | Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, et al. (2012) Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the gamma subunit of the human epithelial sodium channel. J Gen Physiol 140: 375–389. doi: 10.1085/jgp.201110763
|
[54] | Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62: 375–391. doi: 10.1085/jgp.62.4.375
|
[55] | Cohn JV, Alkhalil A, Wagner MA, Rajapandi T, Desai SA (2003) Extracellular lysines on the plasmodial surface anion channel involved in Na+ exclusion. Mol Biochem Parasitol 132: 27–34. doi: 10.1016/j.molbiopara.2003.08.001
|
[56] | Ocampo M, Rodriguez LE, Curtidor H, Puentes A, Vera R, et al. (2005) Identifying Plasmodium falciparum cytoadherence-linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes. Protein Sci 14: 504–513. doi: 10.1110/ps.04883905
|