全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Studies on Inhibition of Respiratory Cytochrome bc1 Complex by the Fungicide Pyrimorph Suggest a Novel Inhibitory Mechanism

DOI: 10.1371/journal.pone.0093765

Full-Text   Cite this paper   Add to My Lib

Abstract:

The respiratory chain cytochrome bc1 complex (cyt bc1) is a major target of numerous antibiotics and fungicides. All cyt bc1 inhibitors act on either the ubiquinol oxidation (QP) or ubiquinone reduction (QN) site. The primary cause of resistance to bc1 inhibitors is target site mutations, creating a need for novel agents that act on alternative sites within the cyt bc1 to overcome resistance. Pyrimorph, a synthetic fungicide, inhibits the growth of a broad range of plant pathogenic fungi, though little is known concerning its mechanism of action. In this study, using isolated mitochondria from pathogenic fungus Phytophthora capsici, we show that pyrimorph blocks mitochondrial electron transport by affecting the function of cyt bc1. Indeed, pyrimorph inhibits the activities of both purified 11-subunit mitochondrial and 4-subunit bacterial bc1 with IC50 values of 85.0 μM and 69.2 μM, respectively, indicating that it targets the essential subunits of cyt bc1 complexes. Using an array of biochemical and spectral methods, we show that pyrimorph acts on an area near the QP site and falls into the category of a mixed-type, noncompetitive inhibitor with respect to the substrate ubiquinol. In silico molecular docking of pyrimorph to cyt b from mammalian and bacterial sources also suggests that pyrimorph binds in the vicinity of the quinol oxidation site.

References

[1]  Trumpower BL (1990) Cytochrome bc1 complexes of microorganisms. Microbiological Reviews 54: 101–129.
[2]  Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc Lond B98: 312–399. doi: 10.1098/rspb.1925.0039
[3]  Leadbeater A (2012) Resistance risk to QoI fungicides and anti-resistance strategies. In: Thind TS, editor. Fungicide resistance in crop protection: risk and mangement: CAB eBooks. 141–152.
[4]  Trumpower BL (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. Journal of Biological Chemistry 265: 11409–11412.
[5]  Mitchell P (1975) Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive uniquinone cycle. FEBS Lett 56: 1–6. doi: 10.1016/0014-5793(75)80098-6
[6]  Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, et al. (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60–66. doi: 10.1126/science.277.5322.60
[7]  Iwata S, Lee JW, Okada K, Lee JK, Iwata M, et al. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex [see comments]. Science 281: 64–71. doi: 10.1126/science.281.5373.64
[8]  Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, et al. (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392: 677–684.
[9]  Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure at 2.3 A resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 15: 669–684. doi: 10.1016/s0969-2126(00)00152-0
[10]  Esser L, Elberry M, Zhou F, Yu CA, Yu L, et al. (2008) Inhibitor complexed structures of the cytochrome bc1 from the photosynthetic bacterium Rhodobacter sphaeroides at 2.40 ? resolution. J Biol Chem 283: 2846–2857. doi: 10.1074/jbc.m708608200
[11]  Kleinschroth T, Castellani M, Trinh CH, Morgner N, Brutschy B, et al. (2011) X-ray structure of the dimeric cytochrome bc(1) complex from the soil bacterium Paracoccus denitrificans at 2.7-A resolution. Biochim Biophys Acta 1807: 1606–1615. doi: 10.1016/j.bbabio.2011.09.017
[12]  Berry EA, Huang L, Saechao LK, Pon NG, Valkova-Valchanova M, et al. (2004) X-ray structure of Rhodobacter capsulatus cytochrome bc1: comparison with its mitochondrial and chloroplast counterparts. Photosynthesis Research 81: 251–275. doi: 10.1023/b:pres.0000036888.18223.0e
[13]  Esser L, Yu CA, Xia D (2013) Structural Basis of Resistance to Anti-Cytochrome bc1 Complex Inhibitors: Implication for Drug Improvement. Curr Pharm Des.
[14]  Mu CW, Yuan HZ, Li N, Fu B, Xiao YM, et al. (2007) Synthesis and fungicidal activities of a novel seris of 4-[3-(pyrid-4-yl)-3-substituted phenyl acryloyl] morpholine. Chem J Chinese U 28: 1902–1906.
[15]  Chen XX, Yuan HZ, Qin ZH, Qi SH, Sun LP (2007) Preliminary studies on antifungal activity of pyrimorph. Chinese Journal of Pesticide Science 9: 229–234.
[16]  Wang HC, Sun HY, Stammler G, Ma JX, Zhou MG (2009) Baseline and differential sensitivity of Peronophythora litchii (lychee downy blight) to three carboxylic acid amide fungicides. Plant Pathology.
[17]  Du YN, Wang GZ, Li G (2008) Preventive and therapeutic experiment of 20% Bimalin on phytophthora blight of Capsicum. Modern Agrochemicals 7: 44–46.
[18]  Sun H, Wang H, Stammler G, Ma J, Zhou MG (2010) Baseline Sensitivity of Populations of Phytophthora capsici from China to Three Carboxylic Acid Amide (CAA) Fungicides and Sequence Analysis of Cholinephosphotranferases from a CAA-sensitive Isolate and CAA-resistant Laboratory Mutants. Journal of Phytopathology 158: 244–252. doi: 10.1111/j.1439-0434.2009.01606.x
[19]  Blum M, Boehler M, Randall E, Young V, Csukai M, et al. (2010) Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Mol Plant Pathol 11: 227–243. doi: 10.1111/j.1364-3703.2009.00604.x
[20]  Yan X, Qin W, Sun L, Qi S, Yang D, et al. (2010) Study of inhibitory effects and action mechanism of the novel fungicide pyrimorph against Phytophthora capsici. J Agric Food Chem 58: 2720–2725. doi: 10.1021/jf902410x
[21]  Pang Z, Shao J, Chen L, Lu X, Hu J, et al. (2013) Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance. PLoS One 8: e56513. doi: 10.1371/journal.pone.0056513
[22]  Yu CA, Yu L (1982) Syntheses of biologically active ubiquinone derivatives. Biochemistry 21: 4096–4101. doi: 10.1021/bi00260a028
[23]  Mitani S, Araki S, Takii Y, Ohshima T, Matsuo N, et al. (2001) The biochemical mode of action of the novel selective fungicide cyazofamid: specific inhibition of mitochondrial complex III in Phythium spinosum. Pesticide Biochemistry and Physiology 71: 107–115. doi: 10.1006/pest.2001.2569
[24]  Yu L, Yang S, Yin Y, Cen X, Zhou F, et al. (2009) Chapter 25 Analysis of electron transfer and superoxide generation in the cytochrome bc1 complex. Methods Enzymol 456: 459–473. doi: 10.1016/s0076-6879(08)04425-x
[25]  Mather MW, Yu L, Yu CA (1995) The involvement of threonine 160 of cytochrome b of Rhodobacter sphaeroides cytochrome bc1 complex in quinone binding and interaction with subunit IV. Journal of Biological Chemistry 270: 28668–28675. doi: 10.1074/jbc.270.48.28668
[26]  Tian H, Yu L, Mather MW, Yu CA (1997) The Involvement of Serine 175 and Alanine 185 of Cytochrome b of Rhodobacter sphaeroides Cytochrome bc1 Complex in Interaction with Iron-Sulfur Protein. Journal of Biological Chemistry 272: 23722–23728. doi: 10.1074/jbc.272.38.23722
[27]  Yu L, Yu CA (1991) Essentiality of the molecular weight 15,000 protein (subunit IV) in the cytochrome b-c1 complex of rhodobacter sphaeroides. Biochemistry 30: 4934–4939. doi: 10.1021/bi00234a014
[28]  Nicklaus M.C SM (2012) CADD Group Chemoinformatics Tools and User Services.
[29]  Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D 66: 213–221. doi: 10.1107/s0907444909052925
[30]  Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, et al. (1993) General Atomic and Molecular Electronic-Structure System. Journal of Computational Chemistry 14: 1347–1363. doi: 10.1002/jcc.540141112
[31]  Sanner MF (1999) Python: A programming language for software integration and development. Journal of Molecular Graphics and Modelling 17: 57–61.
[32]  Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21: 1908–1916. doi: 10.1093/bioinformatics/bti315
[33]  Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31: 455–461. doi: 10.1002/jcc.21334
[34]  Esser L, Quinn B, Li Y, Zhang M, Elberry M, et al. (2004) Crystallographic studies of quinol oxidation site inhibitors: A modified classification of inhibitors for the cytochrome bc1 complex. Journal of Molecular Biology 341: 281–302. doi: 10.1016/j.jmb.2004.05.065
[35]  von Jagow G, Link TA (1986) Use of specific inhibitors on the mitochondrial bc1 complex. Methods in Enzymology 126: 253–271. doi: 10.1016/s0076-6879(86)26026-7
[36]  Link TA, Haase U, Brandt U, von Jagow G (1993) What information do inhibitors provide about the structure of the hydroquinone oxidation site of ubihydroquinone: cytochrome c oxidoreductase? Journal of Bioenergetics and Biomembrane 25: 221–232. doi: 10.1007/bf00762584
[37]  von Jagow G, Liungdahl PO, Craf P, Ohnishi T, Trumpower BL (1984) An Inhibitor of Mitochondrial Respiration Which Binds to Cytochrome b and Displaces Quinone from the Iron-Sulfur Protein of the Cytochrome bc1 Complex. Journal of Biological Chemistry 259: 6318–6326.
[38]  von Jagow G, Engel WD (1981) Complete inhibition of electron transfer from ubiquinol to cytochrome b by teh combined action of antimycin and myxothiazol. FEBS Letters 136: 19–24. doi: 10.1016/0014-5793(81)81206-9
[39]  Berry EA, Huang LS, Lee DW, Daldal F, Nagai K, et al. (2010) Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc1 complex. Biochim Biophys Acta 1797: 360–370. doi: 10.1016/j.bbabio.2009.12.003
[40]  Jordan DB, Livingston RS, Bisaha JJ, Duncan KE, Pember SO, et al. (1999) Mode of action of famoxadone. Pesticide Science 55: 105–118. doi: 10.1002/(sici)1096-9063(199902)55:2<105::aid-ps879>3.0.co;2-d
[41]  Bolgunas S, Clark DA, Hanna WS, Mauvais PA, Pember SO (2006) Potent inhibitors of the Qi site of the mitochondrial respiration complex III. J Med Chem 49: 4762–4766. doi: 10.1021/jm060408s
[42]  Brasseur G, Saribas AS, Daldal F (1996) A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex. BiochimBiophysActa 1275: 61–69. doi: 10.1016/0005-2728(96)00051-5
[43]  Wood PM, Hollomon DW (2003) A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III. Pest Manag Sci 59: 499–511. doi: 10.1002/ps.655
[44]  Steinfeld U, Sierotzki H, Parisi S, Poirey S, Gisi U (2001) Sensitivity of mitochondrial respiration to different inhibitors in Venturia inaequalis. Pesticide Mangement Science 57: 787–796. doi: 10.1002/ps.356
[45]  Dosnon-Olette R, Schroder P, Bartha B, Aziz A, Couderchet M, et al. (2011) Enzymatic basis for fungicide removal by Elodea canadensis. Environ Sci Pollut Res Int 18: 1015–1021. doi: 10.1007/s11356-011-0460-1
[46]  Gaur M, Choudhury D, Prasad R (2005) Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. J Mol Microbiol Biotechnol 9: 3–15. doi: 10.1159/000088141
[47]  Hill P, Kessl J, Fisher N, Meshnick S, Trumpower BL, et al. (2003) Recapitulation in Saccharomyces cerevisiae of cytochrome b mutations conferring resistance to atovaquone in Pneumocystis jiroveci. Antimicrob Agents Chemother 47: 2725–2731. doi: 10.1128/aac.47.9.2725-2731.2003
[48]  Garrett RH, Grisham CM (1999) Biochemistry. Fort Worth, Philadelphia, San Diego, New York, Orlando, Austin, San Antonio, Toronto, Montreal, London, Sydney, Tokyo: Saunders College Publishing, Harcourt Brace College Publishers.
[49]  Yoshida T, Murai M, Abe M, Ichimaru N, Harada T, et al. (2007) Crucial structural factors and mode of action of polyene amides as inhibitors for mitochondrial NADH-ubiquinone oxidoreductase (complex I). Biochemistry 46: 10365–10372. doi: 10.1021/bi7010306
[50]  Hatefi Y, Stiggall DL (1978) Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Methods Enzymol 53: 21–27. doi: 10.1016/s0076-6879(78)53008-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133