全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Influence of Social Structure, Habitat, and Host Traits on the Transmission of Escherichia coli in Wild Elephants

DOI: 10.1371/journal.pone.0093408

Full-Text   Cite this paper   Add to My Lib

Abstract:

Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental, and host-related factors that influence transmission patterns.

References

[1]  Freeland WJ (1979) Primate social groups as biological islands. Ecology 60: 719–728. doi: 10.2307/1936609
[2]  Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press. 757 p.
[3]  Nunn CL, Thrall PH, Leendertz FH, Boesch C (2011) The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6: e21677. doi: 10.1371/journal.pone.0021677
[4]  Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, et al. (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Syst 34: 517–547. doi: 10.1146/annurev.ecolsys.34.030102.151725
[5]  Caillaud D, Levero F, Cristescu R, Gatti S, Dewas M, et al. (2006) Gorilla susceptibility to the Ebola virus: the cost of sociality. Curr Biol 16: R489–R491. doi: 10.1016/j.cub.2006.06.017
[6]  Hamede RK, Bashford J, McCallum H, Jones M (2009) Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol Lett 12: 1147–1157. doi: 10.1111/j.1461-0248.2009.01370.x
[7]  Corner LAL, Pfeiffer DU, Morris RS (2003) Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Prev Vet Med 59: 147–167. doi: 10.1016/s0167-5877(03)00075-8
[8]  Godfrey SS, Bull CM, James R, Murray K (2009) Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behav Ecol Sociobiol 63: 1045–1056. doi: 10.1007/s00265-009-0730-9
[9]  VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2013) Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J Anim Ecol83: 406–414. doi: 10.1111/1365-2656.12137
[10]  Rwego IB, Isabirye-Basuta G, Gillespie TR, Goldberg TL (2008) Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conserv Biol 22: 1600–1607. doi: 10.1111/j.1523-1739.2008.01018.x
[11]  Bull CM, Godfrey SS, Gordon DM (2012) Social networks and the spread of Salmonella in a sleepy lizard population. Mol Ecol 21: 4386–4392. doi: 10.1111/j.1365-294x.2012.05653.x
[12]  Eames KTD (2008) Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol 73: 104–111. doi: 10.1016/j.tpb.2007.09.007
[13]  Keeling MJ (1999) The effects of local spatial structure on epidemiological invasions. P Roy Soc B 266: 859–867. doi: 10.1098/rspb.1999.0716
[14]  Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J Roy Soc Interface 4: 879–891. doi: 10.1098/rsif.2007.1100
[15]  Drewe JA, Eames KTD, Madden JR, Pearce GP (2011) Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control. Prev Vet Med 101: 113–120. doi: 10.1016/j.prevetmed.2011.05.006
[16]  Freeland WJ (1976) Pathogens and the evolution of primate sociality. Biotropica 8: 12–24. doi: 10.2307/2387816
[17]  Cote IM, Poulin R (1995) Parasitism and group-size in social animals: a meta analysis. Behav Ecol 6: 159–165. doi: 10.1093/beheco/6.2.159
[18]  Dean EA, Whipp SC, Moon HW (1989) Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli. Infect Immun 57: 82–87.
[19]  Steens A, Waaijenborg S, Teunis PFM, Reimerink JHJ, Meijer A, et al. (2011) Age-dependent patterns of infection and severity explaining the low impact of 2009 influenza A (H1N1): Evidence from serial serologic surveys in the Netherlands. Am J Epidemiol 174: 1307–1315. doi: 10.1093/aje/kwr245
[20]  Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139: 603–622. doi: 10.1086/285346
[21]  Skorping A, Jensen KH (2004) Disease dynamics: all caused by males? Trends Ecol Evol 19: 219–220. doi: 10.1016/j.tree.2004.02.006
[22]  Ferrari N, Cattadori IM, Nespereira J, Rizzoli A, Hudson PJ (2004) The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7: 88–94. doi: 10.1046/j.1461-0248.2003.00552.x
[23]  Caillaud D, Prugnolle F, Durand P, Theron A, de Meeus T (2006) Host sex and parasite genetic diversity. Microbes Infect 8: 2477–2483. doi: 10.1016/j.micinf.2006.06.003
[24]  Nunn CL, Lindenfors P, Pursall ER, Rolff J (2009) On sexual dimorphism in immune function. Phil T Roy Soc B 364: 61–69. doi: 10.1098/rstb.2008.0148
[25]  Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255–1262. doi: 10.1126/science.1224203
[26]  Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. P Natl Acad Sci USA 105: 566–570. doi: 10.1073/pnas.0707221105
[27]  Walter J, Ley R (2011) The human gut microbiome: ecology and recent evolutionary changes. Annul Rev Microbiol 65: 411–429. doi: 10.1146/annurev-micro-090110-102830
[28]  Judge J, Kyriazakis I, Greig A, Allcroft DJ, Hutchings MR (2005) Clustering of Mycobacterium avium subsp. paratuberculosis in rabbits and the environment: How hot is a hot spot? Appl Environ Microb 71: 6033–6038. doi: 10.1128/aem.71.10.6033-6038.2005
[29]  Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, et al. (2010) Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis 201: 1764–1774. doi: 10.1086/652456
[30]  Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim Behav 69: 1357–1371. doi: 10.1016/j.anbehav.2004.08.018
[31]  Moss CJ, Poole JH (1983) Relationships and social structure of African elephants. In: Hinde RA, editor. Primate Social Relationships. Sunderland, MA: Sinauer. 315–325.
[32]  Archie EA, Moss CJ, Alberts SC (2006) The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants. P Roy Soc B 273: 513–522. doi: 10.1098/rspb.2005.3361
[33]  Wittemyer G, Okello JBA, Rasmussen HB, Arctander P, Nyakaana S, et al. (2009) Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. P Roy Soc B 276: 3513–3521. doi: 10.1098/rspb.2009.0941
[34]  Lee PC, Poole JC, Njiraini N, Sayialel CK, Moss CJ (2011) Male social dynamics: independence and beyond. In: Moss CJ, Croze H, Lee PC, editors. The Amboseli elephants: a long-term perspective on a long-lived mammal Chicago: University of Chicago Press.
[35]  Poole JH, Moss CJ (1989) Elephant mate searching: Group dynamics and vocal and olfactory communication. In: Jewell PA, Maloiy GMO, editors. Biology of large African mammals in their environment. 111–125.
[36]  Charif R, Ramey RII, Langbauer W Jr, Payne K, Martin R, et al. (2005) Spatial relationships and matrilineal kinship in African savanna elephant (Loxodonta africana) clans. Behav Ecol Sociobiol 57: 327–338. doi: 10.1007/s00265-004-0867-5
[37]  Boudailliez B, Berquin P, Mariani-Kurkdjian P, Ilef DD, Cuvelier B, et al. (1997) Possible person-to-person transmission of Escherichia coli O111– associated hemolytic uremic syndrome. Pediatr Nephrol 11: 36–39. doi: 10.1007/s004670050229
[38]  Wilson M (2008) Bacteriology of humans. Malden, MA: Wiley-Blackwell.
[39]  Benavides JA, Godreuil S, Bodenham R, Ratiarison S, Devos C, et al. (2012) No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lopé National Park, Gabon. Appl Environ Microb 78: 4281–4287. doi: 10.1128/aem.07593-11
[40]  Goldberg TL, Gillespie TR, Rwego IB, Wheeler E, Estoff EL, et al. (2007) Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biol Conserv 135: 511–517. doi: 10.1016/j.biocon.2006.10.048
[41]  Maiden MCJ (2006) Multilocus sequence typing of bacteria. Annul Rev Microbiol 60: 561–588. doi: 10.1146/annurev.micro.59.030804.121325
[42]  Feil EJ, Spratt BG (2001) Recombination and the population structures of bacterial pathogens. Annul Rev Microbiol 55: 561–590.
[43]  Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8: 207–217. doi: 10.1038/nrmicro2298
[44]  Mbise AN, Mlengeya TDK, Mollel JO (1998) Septicaemic salmonellosis of elephants in Tanzania. Bulletin of Animal Health and Production in Africa 46: 95–100.
[45]  Fowler ME, Mikota SK (2006) Biology, medicine and surgery of elephants. Ames, Iowa: Blackwell Publishing. 565 p.
[46]  Caugant DA, Levin B, Selander R (1984) Distribution of multilocus genotypes of Escherichia coli within and between host families. Epidemiol Infect 92: 377–384. doi: 10.1017/s0022172400064597
[47]  Johnson JR, Owens K, Gajewski A, Clabots C (2008) Escherichia coli colonization patterns among human household members and pets, with attention to acute urinary tract infection. J Infect Dis 197: 218–224. doi: 10.1086/524844
[48]  Bergholz PW, Noar JD, Buckley DH (2011) Environmental patterns are imposed on the population structure of Escherichia coli after fecal deposition. Appl Environ Microb 77: 211–219. doi: 10.1128/aem.01880-10
[49]  Gordon DM, Cowling A (2003) The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149: 3575–3586. doi: 10.1099/mic.0.26486-0
[50]  Gordon DM (2001) Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology 147: 1079–1085.
[51]  Brennan FP, O’Flaherty V, Kramers G, Grant J, Richards KG (2010) Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl Environ Microb 76: 1449–1455. doi: 10.1128/aem.02335-09
[52]  Jiménez L, Mu?iz I, Toranzos GA, Hazen TC (1989) Survival and activity of Salmonella typhimurium and Escherichia coli in tropical freshwater. J Appl Microbiol 67: 61–69. doi: 10.1111/j.1365-2672.1989.tb04955.x
[53]  Whittam TS (1992) Sex in the soil. Current Biology 2: 676–678. doi: 10.1016/0960-9822(92)90140-6
[54]  Degnan PH, Pusey AE, Lonsdorf EV, Goodall J, Wroblewski EE, et al. (2012) Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. P Natl Acad Sci USA 109: 13034–13039. doi: 10.1073/pnas.1110994109
[55]  Blyton MDJ, Banks SC, Peakall R, Gordon DM (2013) High temporal variability in commensal Escherichia coli strain communities of a herbivorous marsupial. Env Microbiol 15: 2162–2172. doi: 10.1111/1462-2920.12088
[56]  Moss CJ, Croze H, Lee PC (2011) The Amboseli elephants: a long-term perspective on a long-lived mammal. Chicago: University of Chicago Press. 400 p.
[57]  Wittemyer G, Daballen D, Douglas-Hamilton I (2013) Comparative demography of an at-risk African elephant population. PloS ONE 8: e53726. doi: 10.1371/journal.pone.0053726
[58]  Jachmann H (1988) Estimating age in African elephants: a revision of Laws molar evaluation technique. Afr J Ecol 26: 51–56. doi: 10.1111/j.1365-2028.1988.tb01127.x
[59]  Lee PC, Moss CJ (1995) Statural growth in known-age African elephants (Loxodonta africana). J Zool 236: 29–41. doi: 10.1111/j.1469-7998.1995.tb01782.x
[60]  Rasmussen HB, Wittemyer G, Douglas-Hamilton I (2005) Estimating age of immobilized elephants from teeth impressions using dental silicon. Afr J Ecol 43: 215–219. doi: 10.1111/j.1365-2028.2005.00571.x
[61]  Lee PC, Sayialel S, Lindsay WK, Moss CJ (2012) African elephant age determination from teeth: validation from known individuals. Afr J Ecol 50: 9–20. doi: 10.1111/j.1365-2028.2011.01286.x
[62]  Croze H, Moss CJ (2011) Patterns of occupancy in time and space. In: Moss CJ, Croze H, editors. Amboseli Elephants: A long-term perspective on a long-lived mammal Chicago University of Chicago Press.
[63]  Wittemyer G, Getz WM, Vollrath F, Douglas-Hamilton I (2007) Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. Behav Ecol Sociobiol 61: 1919–1931. doi: 10.1007/s00265-007-0432-0
[64]  Douglas-Hamilton I, Krink T, Vollrath F (2005) Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften 92: 158–163. doi: 10.1007/s00114-004-0606-9
[65]  Wittemyer G, Daballen D, Rasmussen H, Kahindi O, Douglas-Hamilton I (2005) Demographic status of elephants in the Samburu and Buffalo Springs National Reserves, Kenya. Afr J Ecol 43: 44–47. doi: 10.1111/j.1365-2028.2004.00543.x
[66]  Alberts SC, Hollister-Smith JA, Mututua RS, Sayialel SN, Muruthi PM, et al. (2005) Seasonality and long-term change in a savanna environment. In: Brockman DK, van Schaik CP, editors. Seasonality in primates: studies of liviing and extinct extinct human and non-human primates Cambridge: Cambridge University Press. 157–196.
[67]  Wittemyer G (2001) The elephant population of Samburu and Buffalo Springs National Reserves, Kenya. Afr J Ecol 39: 357–365. doi: 10.1046/j.1365-2028.2001.00324.x
[68]  Walk ST, Alm EW, Calhoun LM, Mladonicky JM, Whittam TS (2007) Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Env Microbiol 9: 2274–2288. doi: 10.1111/j.1462-2920.2007.01341.x
[69]  Moss CJ, Lee PC (2011) Female social dynamics: fidelity and flexibility. In: Moss CJ, Croze H, Lee PC, editors. The Amboseli elephants: a long-term perspective on a long-lived mammal Chicago: University of Chicago Press. 205–245.
[70]  Janmaat KRL, Olupot W, Chancellor RL, Arlet ME, Waser PM (2009) Long-term site fidelity and individual home range shifts in Lophocebus albigena. Int J Primatol 30: 443–466. doi: 10.1007/s10764-009-9352-3
[71]  Young JK, Glasscock SN, Shivik JA (2008) Does spatial structure persist despite resource and population changes? Effects of experimental manipulations on coyotes. J Mammal 89: 1094–1104. doi: 10.1644/07-mamm-a-198.1
[72]  Wirth T, Falush D, Lan R, Colles F, Mensa P, et al. (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60: 1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x
[73]  Contreras CA, Ochoa TJ, Ruiz J, Lacher DW, Rivera FP, et al. (2011) Phylogenetic relationships of Shiga toxin-producing Escherichia coli isolated from Peruvian children. J Med Microbiol 60: 639–646. doi: 10.1099/jmm.0.026666-0
[74]  Gordon DM, Clermont O, Tolley H, Denamur E (2008) Assigning Escherichia coli strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. Env Microbiol 10: 2484–2496. doi: 10.1111/j.1462-2920.2008.01669.x
[75]  Méric G, Kemsley EK, Falush D, Saggers EJ, Lucchini S (2013) Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Env Microbiol 15: 487–501. doi: 10.1111/j.1462-2920.2012.02852.x
[76]  Johnson JR, Delavari P, Kuskowski M, Stell AL (2001) Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 183: 78–88. doi: 10.1086/317656
[77]  Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, et al. (1999) The link between phylogeny and virulence in Escherichia coli extra-intestinal infection. Infect Immun 67: 546–553.
[78]  Ochman H, Selander RK (1984) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157: 690–693.
[79]  Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x
[80]  Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175: 1251–1266. doi: 10.1534/genetics.106.063305
[81]  Su C, Brandt LJ (1995) Escherichia coli O157:H7 infection in humans. Ann Intern Med 123: 698–714. doi: 10.7326/0003-4819-123-9-199511010-00009
[82]  Slutsker L, Ries AA, Greene KD, Wells JG, Hutwagner L, et al. (1997) Escherichia coli O157:H7 diarrhea in the United States: clinical and epidemiologic features. Ann Intern Med 126: 505–513. doi: 10.7326/0003-4819-126-7-199704010-00002
[83]  Levine MM, Ferreccio C, Prado V, Cayazzo M, Abrego P, et al. (1993) Epidemiologic studies of Escherichia coli diarrheal infections in a low socioeconomic level peri-urban community in Santiago, Chile. Am J Epidemiol 138: 849–869.
[84]  Ezenwa VO (2004) Host social behavior and parasitic infection: a multifactorial approach. Behav Ecol 15: 446–454. doi: 10.1093/beheco/arh028
[85]  Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76: 326–335. doi: 10.2307/1941192
[86]  Alexander RD (1974) The evolution of social behavior. Ann Rev Ecol Syst 5: 325–383. doi: 10.1146/annurev.es.05.110174.001545
[87]  Tandé D, Boisramé-Gastrin S, Münck MR, Héry-Arnaud G, Gouriou S, et al. (2010) Intrafamilial transmission of extended-spectrum-β-lactamase-producing Escherichia coli and Salmonella enterica Babelsberg among the families of internationally adopted children. J Antimicrob Chemoth 65: 859–865. doi: 10.1093/jac/dkq068
[88]  Valverde A, Grill F, Coque TM, Pintado V, Baquero F, et al. (2008) High rate of intestinal colonization with Extended-Spectrum-β-Lactamase-Producing organisms in household contacts of infected community patients. J Clin Microbiol 46: 2796–2799. doi: 10.1128/jcm.01008-08
[89]  Routman E, Miller RD, Phillips-Conroy J, Hartl DL (1985) Antibiotic resistance and population structure in Escherichia coli from free-ranging African yellow baboons. Appl Environ Microb 50: 749–754.
[90]  Carlos C, Pires M, Stoppe N, Hachich E, Sato M, et al. (2010) Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 10: 161. doi: 10.1186/1471-2180-10-161
[91]  Berthe T, Ratajczak M, Clermont O, Denamur E, Petit F (2013) Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl Environ Microb 79: 4684–4693. doi: 10.1128/aem.00698-13
[92]  Smith JM, Feil EJ, Smith NH (2000) Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22: 1115–1122. doi: 10.1002/1521-1878(200012)22:12<1115::aid-bies9>3.0.co;2-r
[93]  Johnson JR, Menard M, Johnston B, Kuskowski MA, Nichol K, et al. (2009) Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Ch 53: 2733–2739. doi: 10.1128/aac.00297-09
[94]  Fraser C, Hanage WP, Spratt BG (2005) Neutral microepidemic evolution of bacterial pathogens. P Natl Acad Sci USA 102: 1968–1973. doi: 10.1073/pnas.0406993102
[95]  Cesaris L, Gillespie BE, Srinivasan V, Almeida RA, Zecconi A, et al. (2007) Discriminating between strains of Escherichia coli using pulsed-field gel electrophoresis and BOX-PCR. Foodborne Pathog Dis 4: 473–480. doi: 10.1089/fpd.2007.0038
[96]  Goldberg TL, Gillespie TR, Singer RS (2006) Optimization of analytical parameters for inferring relationships among Escherichia coli isolates from repetitive-element PCR by maximizing correspondence with multilocus sequence typing data. Appl Environ Microb 72: 6049–6052. doi: 10.1128/aem.00355-06
[97]  Ezenwa VO (2003) Habitat overlap and gastrointestinal parasitism in sympatric African bovids. Parasitology 126: 379–388. doi: 10.1017/s0031182002002913
[98]  Alm EW, Walk ST, Gordon DM (2011) The niche of Escherichia coli. In: Walk ST, Feng PCH, editors. Population genetics of bacteria: A tribute to Thomas S Whittam. Washington DC: ASM Press. 69–89.
[99]  Whittam TS (1989) Clonal dynamics of Escherichia coli in its natural habitat. Antonie Van Leeuwenhoek 55: 23–32. doi: 10.1007/bf02309616
[100]  Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837–848. doi: 10.1016/j.cell.2006.02.017
[101]  Gordon DM (1997) The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143: 2039–2046. doi: 10.1099/00221287-143-6-2039
[102]  Badgley BD, Ferguson J, Heuvel AV, Kleinheinz GT, McDermott CM, et al. (2011) Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan. Water Res 45: 721–731. doi: 10.1016/j.watres.2010.08.041
[103]  Hansen DL, Ishii S, Sadowsky MJ, Hicks RE (2009) Escherichia coli Populations in Great Lakes Waterfowl Exhibit Spatial Stability and Temporal Shifting. Appl Environ Microb 75: 1546–1551. doi: 10.1128/aem.00444-08
[104]  Byappanahalli MN, Sawdey R, Ishii S, Shively DA, Ferguson JA, et al. (2009) Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Res 43: 806–814. doi: 10.1016/j.watres.2008.11.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133