全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effects of Gibberellic Acid and N, N-Dimethyl Piperidinium Chloride on the Dose of and Physiological Responses to Prometryn in Black Nightshade (Solanum nigrum L.)

DOI: 10.1371/journal.pone.0093654

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of gibberellic acid (GA3) and N, N-dimethyl piperidinium chloride (DPC) in combination with prometryn would likely increase the control of black nightshade in cotton fields. Experiments were designed to investigate the physiological and biochemical responses of black nightshade at the three- to four-leaf stage to prometryn applied at different rates, either alone or in combination with GA3 or DPC, in a greenhouse environment. These studies demonstrated that prometryn applied in combination with DPC at low rates (7.2 g ai ha?1) led to increased fresh weight and visible injury of black nightshade compared with prometryn applied alone or in combination with GA3; however, at rates of 36, 180, and 900 g ai ha?1, prometryn in combination with DPC caused the least visible injury among all treatments and prometryn in combination with GA3 caused the greatest visible injury. These results suggest that black nightshade suffered more severe damage when prometryn was applied in combination with GA3, which is supported by the reduced soluble protein content, lower antioxidant enzyme activities, and higher malondialdehyde (MDA) content in the plants treated with prometryn plus GA3. These results indicate that the application of GA3 in combination with prometryn to black nightshade may have the potential to lower the levels of prometryn tolerance in these plants.

References

[1]  Holm LG, Plucknett DL, Pancho JV, Herberger JP (1991) The World’s Worst Weeds. Distribution and Biology. Honolulu, HI: University of Hawaii Press. 430–435.
[2]  Wuolo A, and J?nsson B (2002) Nattskatta ?r ett problemog?s. Potatis Gr?nsaker Nr4.
[3]  Shrestha A, Fidelibus M (2005) Grapevine row orientation affects light environment, growth, and development of black nightshade (Solanum nigrum). Weed Sci 53(6): 802–812. doi: 10.1614/ws-04-181r1.1
[4]  Economou G, Bilalis D, Avgoulas C (2005) Weed Flora Distribution in Greek Cotton Fields and Its Possible Influence by Herbicides. Weed Sci 33(4): 406–419. doi: 10.1007/bf02981309
[5]  Kaloumenos NS, Veletza VG, Papantoniou AN, Kadis SG, Eleftherohorinos IG (2005) Influence of Pyrithiobac Application Rate and Timing on Weed Control and Cotton Yield in Greece. Weed Technol 19(1): 207–216. doi: 10.1614/wt-04-188
[6]  Keeling JW, Verett KS, Reed JD, Dotray PA (2011) Cotton (Gossypium hirsutum) Tolerance to Propazine Applied Preand Postemergence. Weed Technol. 25: 178–182. doi: 10.1614/wt-d-10-00110.1
[7]  Dunk P, John WW, Shawn DA (2002) Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci 50(5): 642–647. doi: 10.1614/0043-1745(2002)050[0642:wmwcfa]2.0.co;2
[8]  Byrd JD (2000) Report of the 1999 Cotton Weed Loss Committee. 2000 Proc. Beltwide Cotton Conf. 2: 1455–1458.
[9]  Walter ET, Britton TT, Clewis SB, Askew SD, Wilcut JW (2006) Glyphosate-Resistant Cotton (Gossypium hirsutum) Response and Weed Management with Trifloxysulfuron, Glyphosate, Prometryn, and MSMA. Weed Technol 20(1): 6–13. doi: 10.1614/wt-04-257r1.1
[10]  Porterfield D, Wilcut JW, Askew SD (2002) Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci 50: 642–647. doi: 10.1614/0043-1745(2002)050[0642:wmwcfa]2.0.co;2
[11]  Thomas WE, Britton TT, Clewis SB, Askew SD, Wilcut JW (2006) Glyphosate-resistant cotton (Gossypium hirsutum L.) response and weed management with trifloxysulfuron, glyphosate, prometryn, and MSMA. Weed Technol 20: 6–13. doi: 10.1614/wt-04-257r1.1
[12]  Reddy AR, Reddy KR, Hodges HF (1996) Mepiquat chloride (PIX)-induced changes in photosynthesis and growth of cotton. Plant Growth Regulation 20: 179–183. doi: 10.1007/bf00043305
[13]  Feng GY, Yao YD, Du MW, Tian JS, Luo HH, et al. (2012) Dimethyl Piperidinium Chloride (DPC) Regulation of Canopy Architecture and Photosynthesis in a Cotton Hybrid in an Arid Region. Cotton Sci 24(1): 44–51.
[14]  Hake K, Kerby T, McCarty W, O’Neal D, Supak J (1991) Physiology of PIX. In: Physiology Today, Vol. 2, No. 6. Memphis, USA: National Cotton Council of America.
[15]  Gausman HW, Walter H, Stein E, Rittig FR, Learner RW, et al.. (1979) Leaf CO2 uptake and chlorophyll ratios of PIX-treated cotton. In: Proc 6th Ann Meeting of Plant Growth Reg Working Group, Las Vegas, 117-12.5. USA: PGRWG, Longmount, CO.
[16]  Gurinderbir SC, Johnson WG (2012) Influence of Glyphosate or Glufosinate Combinations with Growth Regulator Herbicides and Other Agrochemicals in Controlling Glyphosate-Resistant Weeds. Weed Technol 26(4): 638–643. doi: 10.1614/wt-d-12-00058.1
[17]  Jerry LC, Shawn DA, Dunk P, John WW (2002) Bromoxynil, Prometryn, Pyrithiobac, and MSMA Weed Management Systems for Bromoxynil-Resistant Cotton (Gossypium hirsutum). Weed Technol 16(4): 712–718. doi: 10.1614/0890-037x(2002)016[0712:bppamw]2.0.co;2
[18]  Scott BC, Wilcut JW (2007) Economic Assessment of Weed Management in Strip- and Conventional-Tillage Nontransgenic and Transgenic Cotton. Weed Technol 21(1): 45–52. doi: 10.1614/wt-06-014.1
[19]  Scott BC, Miller DK, Koger CH, Baughman TA, Price AJ, et al. (2008) Weed Management and Crop Response with Glyphosate, S-Metolachlor, Trifloxysulfuron, Prometryn, and Msma in Glyphosate-Resistant Cotton. Weed Technol 22(1): 160–167. doi: 10.1614/wt-07-082.1
[20]  Green JM (1989) Herbicide antagonism at the whole plant level. Weed Technol 3: 217–226.
[21]  Hatzios KK, Penner D (1985) Interaction of herbicides with other agricultural chemicals in higher plants. Rev. Weed Sci 1: 1–64.
[22]  Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenol oxidase in Beta vulgaris. Plant Physiol 24: 1–15. doi: 10.1104/pp.24.1.1
[23]  Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189–198. doi: 10.1016/0003-9861(68)90654-1
[24]  Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
[25]  Dhindsa RS, Plumb-Dhindsa P, Throne TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32: 93–101. doi: 10.1093/jxb/32.1.93
[26]  Chance M, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2: 764–775. doi: 10.1016/s0076-6879(55)02300-8
[27]  Wang ZG, Feng CN, Guo WS, Xia YR, Zhu XK, et al. (2010) Effects of Herbicides on Physiology and Biochemistry of Weak-Gluten Wheat. J Agro-Environ Sci 29(6): 1027–1032.
[28]  Zhang DY, Yang WD, Dang JY, Miao GY (2007) Effects of Herbicides on Grain Yield and Physiological Characteristics of Strong Gluten Wheat. J Applied & Environ Biol 13(3): 294–300.
[29]  Zhang MS, Du JC, Xie B, Tan F, Yang YH (2004) Relationship between osmoregulation substance in sweet potato under water stress and variety drought resistance. J Nanjing Agric University 27(4): 123–125.
[30]  Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187–223. doi: 10.1146/annurev.pp.41.060190.001155
[31]  Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91: 179–194.
[32]  Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162: 897–904. doi: 10.1016/s0168-9452(02)00037-7
[33]  Ma X, Ma F, Mi Y, Ma Y, Shu H (2008a) Morphological and physiological responses of two contrasting Malus species to exogenous abscisic acid application. Plant Growth Regul 56: 77–87. doi: 10.1007/s10725-008-9287-2
[34]  Bailly C, Benamar A, Corbineau F, D?me D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. Plant Physiol 97: 104–110. doi: 10.1111/j.1399-3054.1996.tb00485.x
[35]  Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161: 1135–1144. doi: 10.1016/s0168-9452(01)00517-9
[36]  Davey MW, Montagu MV, Inzé D, Sanmatin M, Kanellis A, et al. (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80: 825–860. doi: 10.1002/(sici)1097-0010(20000515)80:7<825::aid-jsfa598>3.3.co;2-y
[37]  Ma YH, Ma FW, Zhang JK, Li MY, Wang YH, et al. (2008b) Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci 175: 761–766. doi: 10.1016/j.plantsci.2008.07.010
[38]  Hernandez JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2?/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127: 817–831. doi: 10.1104/pp.010188
[39]  Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161: 531–554. doi: 10.1078/0176-1617-01084
[40]  Fridovich I (1986) Biological effects of superoxide radical. Arch Biochem Biophys 247(1): 1–11. doi: 10.1016/0003-9861(86)90526-6
[41]  Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios L (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh.). Environ Exp Bot 56: 54–62. doi: 10.1016/j.envexpbot.2005.01.002
[42]  Kenyon W, Duke S (1985) Effects of Acifluorfen on Endogenous Antioxidants andProtective Enzymes in Cucumber (Cucumis sativus L.)CotyledonsPlant. Physiol 79, 862–866.
[43]  Nemat MM, Hassan NM, El-Bastawisy M (2008) Changes in antioxidants and kinetics of glutathione-S-transferase of maize in response to isoproturon treatment, Plant Biosystems. 142: 5–16. doi: 10.1080/11263500701872135
[44]  Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249–279. doi: 10.1146/annurev.arplant.49.1.249

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133