全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

DOI: 10.1371/journal.pone.0094000

Full-Text   Cite this paper   Add to My Lib

Abstract:

Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

References

[1]  FAO (2012) FAOSTAT - production. Available:/http://faostat3.fao.org/home/index.html#?DOWNLOAD. Accessed 17 March 2013.
[2]  Kunert A, Naz AA, Dedeck O, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115: 683–695. doi: 10.1007/s00122-007-0600-7
[3]  Charmet G (2011) Wheat domestication: lessons for the future. C R Biol 334: 212–220. doi: 10.1016/j.crvi.2010.12.013
[4]  Van Ginkel M, Ogbonnaya F (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. F Crop Res 104: 86–94. doi: 10.1016/j.fcr.2007.02.005
[5]  Spiertz JHJ, Ewert F (2009) Crop production and resource use to meet the growing demand for food, feed and fuel: opportunities and constraints. NJAS - Wageningen J Life Sci 56: 281–300. doi: 10.1016/s1573-5214(09)80001-8
[6]  Brisson N, Gate P, Gouache D, Charmet G, Oury FX, et al. (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. F Crop Res 119: 201–212. doi: 10.1016/j.fcr.2010.07.012
[7]  Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genom 2008: 896451. doi: 10.1155/2008/896451
[8]  Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, et al. (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491: 705–710. doi: 10.1038/nature11650
[9]  Landjeva S, Korzun V, B?rner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156: 271–296. doi: 10.1007/s10681-007-9371-0
[10]  Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One 6: e17279. doi: 10.1371/journal.pone.0017279
[11]  Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29: E25. doi: 10.1093/nar/29.4.e25
[12]  Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, et al. (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125: 1619–1638. doi: 10.1007/s00122-012-1939-y
[13]  Ficco PDBM, Russo MA, De Vita P, Papa R, Rubiales D, et al. (2012) Characterization of wheat DArT markers: genetic and functional features. Mol Genet genomics 287: 741–753. doi: 10.1007/s00438-012-0714-8
[14]  Neumann K, Kobiljski B, Den?i? S, Varshney RK, B?rner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27: 37–58. doi: 10.1007/s11032-010-9411-7
[15]  Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, et al. (2008) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23: 23–33. doi: 10.1007/s11032-008-9210-6
[16]  Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111: 162–170. doi: 10.1007/s00122-005-2014-8
[17]  Purnhauser L, Bóna L, Láng L (2010) Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica 179: 287–295. doi: 10.1007/s10681-010-0312-y
[18]  Graybosch RA (2001) Uneasy Unions: Quality Effects of Rye Chromatin Transfers to Wheat. USDA-ARS/UNL Fac.
[19]  Worland AJ, Korzun V, Ro MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening: 1110–1120.
[20]  Hedden P (2003) The genes of the Green Revolution. Trends Genet 19: 5–9. doi: 10.1016/s0168-9525(02)00009-4
[21]  Abebe TD, Léon J (2012) Spatial and temporal genetic analyses of Ethiopian barley (Hordeum vulgare L.) landraces reveal the absence of a distinct population structure. Genet Resour Crop Evol 60: 1547–1558. doi: 10.1007/s10722-012-9941-4
[22]  Zhang L, Liu D, Guo X, Yang W, Sun J, et al. (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12: 42. doi: 10.1186/1471-2156-12-42
[23]  Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54: 357–374. doi: 10.1146/annurev.arplant.54.031902.134907
[24]  Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5: 107–111. doi: 10.1016/s1369-5266(02)00238-8
[25]  Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165–1177. doi: 10.1534/genetics.105.044586
[26]  Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5: 69–76. doi: 10.1007/bf00020088
[27]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[28]  Pritchard JK, Xiaoquan W, Falushb D (2007) Documentation for structure software: Version 2.2.
[29]  Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. doi: 10.1111/j.1365-294x.2005.02553.x
[30]  Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539. doi: 10.1093/bioinformatics/bts460
[31]  Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44: 223–270.
[32]  Zhou H, Muehlbauer G, Steffenson B (2012) Population structure and linkage disequilibrium in elite barley breeding germplasm from the United States. J Zhejiang Univ-Sci B 13: 438–451. doi: 10.1631/jzus.b1200003
[33]  Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, et al. (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119: 889–898. doi: 10.1007/s00122-009-1097-z
[34]  Koebner RM (1995) Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theor Appl Genet 90: 740–745. doi: 10.1007/bf00222142
[35]  Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, et al. (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281: 181–191. doi: 10.1007/s00438-008-0403-9
[36]  Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316: 1862–1866. doi: 10.1126/science.1143986
[37]  Benson J, Brown-Guedira G, Paul Murphy J, Sneller C (2012) Population Structure, Linkage Disequilibrium, and Genetic Diversity in Soft Winter Wheat Enriched for Fusarium Head Blight Resistance. Plant Genome J 5: 71. doi: 10.3835/plantgenome2011.11.0027
[38]  Semagn K, Bj?rnstad ?, Skinnes H, Mar?y AG, Tarkegne Y, et al. (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49: 545–555. doi: 10.1139/g06-002
[39]  Weng Y, Lazar D (2002) Comparison of homoeologous group-6 short arm physical maps of wheat and barley reveals a similar distribution of recombinogenic and gene-rich regions. Theor Appl Genet 104: 1078–1085. doi: 10.1007/s00122-001-0804-1
[40]  Chen X, Min D, Yasir TA, Hu Y-G (2012) Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS One 7: e44510. doi: 10.1371/journal.pone.0044510
[41]  Feuillet C, Travella S, Stein N, Albar L, Nublat A, et al. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A 100: 15253–15258. doi: 10.1073/pnas.2435133100
[42]  Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112: 581–591. doi: 10.1007/s00122-005-0128-7
[43]  Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T (2011) Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology 101: 1209–1216. doi: 10.1094/phyto-08-10-0203
[44]  Zhang D, Bai G, Zhu C, Yu J, Carver BF (2010) Genetic Diversity, Population Structure, and Linkage Disequilibrium in U.S. Elite Winter Wheat. Plant Genome J 3: 117. doi: 10.3835/plantgenome2010.03.0004
[45]  Schl?tterer C (2003) Hitchhiking mapping–functional genomics from the population genetics perspective. Trends Genet 19: 32–38. doi: 10.1016/s0168-9525(02)00012-4
[46]  Crossa J, Burgue?o J, Dreisigacker S, Vargas M, Herrera-Foessel SA, et al. (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177: 1889–1913. doi: 10.1534/genetics.107.078659
[47]  R?der MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, et al. (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106: 67–73.
[48]  Cavanagh CR, Chao S, Wang S, Emma B, Stephen S, et al. (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110: 8057–8062. doi: 10.1073/pnas.1217133110
[49]  Spielmeyer W, McIntosh R, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111: 731–735. doi: 10.1007/s00122-005-2058-9
[50]  Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica. 100: 323–340. doi: 10.1007/978-94-011-4896-2_55
[51]  Zheleva D, Todorovska E, Atanassov A, Christov N, Panayotov I, et al.. (2006) Allele distribution at microsatellite locus xgwm 261 marking the dwarfing gene rht8 in hexaploid wheat from bulgarian and belgian gene bank collections and its application in breeding programs. Biotechol Eq.
[52]  Dvojkovi? K, ?atovi? Z, Drezner G, Somers DJ, Lali? A, et al. (2010) Allelic variability of croatian wheat cultivars at the microsatellite locus xgwm261. 2010: 32–37.
[53]  Schmidt AL, Gale KR, Ellis MH, Giffard PM (2004) Sequence variation at a microsatellite locus (XGWM261) in hexaploid wheat (Triticum aestivum) varieties. Euphytica 135: 239–246. doi: 10.1023/b:euph.0000014874.85495.59
[54]  Worland AJ, Sayers EJ, Korzun V (2001) Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica 119: 155–159. doi: 10.1007/978-94-017-3674-9_100

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133