全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Inferring Cell-Scale Signalling Networks via Compressive Sensing

DOI: 10.1371/journal.pone.0095326

Full-Text   Cite this paper   Add to My Lib

Abstract:

Signalling network inference is a central problem in system biology. Previous studies investigate this problem by independently inferring local signalling networks and then linking them together via crosstalk. Since a cellular signalling system is in fact indivisible, this reductionistic approach may have an impact on the accuracy of the inference results. Preferably, a cell-scale signalling network should be inferred as a whole. However, the holistic approach suffers from three practical issues: scalability, measurement and overfitting. Here we make this approach feasible based on two key observations: 1) variations of concentrations are sparse due to separations of timescales; 2) several species can be measured together using cross-reactivity. We propose a method, CCELL, for cell-scale signalling network inference from time series generated by immunoprecipitation using Bayesian compressive sensing. A set of benchmark networks with varying numbers of time-variant species is used to demonstrate the effectiveness of our method. Instead of exhaustively measuring all individual species, high accuracy is achieved from relatively few measurements.

References

[1]  Kolch W (2000) Meaningful relationships: the regulation of the ras/raf/mek/erk pathway by protein interactions. Biochemical Journal 351: 289–305. doi: 10.1042/0264-6021:3510289
[2]  Swameye I, Müller T, Timmer Jt, Sandra O, Klingmüller U (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proceedings of the National Academy of Sciences 100: 1028–1033. doi: 10.1073/pnas.0237333100
[3]  Hendriks BS, Hua F, Chabot JR (2008) Analysis of mechanistic pathway models in drug discovery: p38 pathway. Biotechnology Progress 24: 96–109. doi: 10.1021/bp070084g
[4]  Bonifacino JS, Dell'Angelica EC, Springer TA (2001) Immunoprecipitation. Current Protocols in Immunology 41: 8.3.1–8.3.28. doi: 10.1002/0471142735.im0803s41
[5]  Shuto T, Imasato A, Jono H, Sakai A, Xu H, et al. (2002) Glucocorticoids synergistically enhance nontypeablehaemophilus influenzae-induced toll-like receptor 2 expression via a negative cross-talk with p38 map kinase. Journal of Biological Chemistry 277: 17263–17270. doi: 10.1074/jbc.m112190200
[6]  Wang Z, Yang H, Tachado SD, Capó-Aponte JE, Bildin VN, et al. (2006) Phosphatase-mediated crosstalk control of erk and p38 mapk signaling in corneal epithelial cells. Investigative Ophthalmology & Visual Science 47: 5267–5275. doi: 10.1167/iovs.06-0642
[7]  Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between mapk signaling pathways in the regulation of cell survival. The FASEB Journal 22: 954–965. doi: 10.1096/fj.06-7859rev
[8]  Guo X, Wang XF (2009) Signaling cross-talk between tgf-β/bmp and other pathways. Cell Research 19: 71–88. doi: 10.1038/cr.2008.302
[9]  Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31: 2–8. doi: 10.1093/carcin/bgp261
[10]  Sontag E, Kiyatkin A, Kholodenko BN (2004) Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20: 1877–1886. doi: 10.1093/bioinformatics/bth173
[11]  Schmidt H, Cho KH, Jacobsen EW (2005) Identification of small scale biochemical networks based on general type system perturbations. FEBS Journal 272: 2141–2151. doi: 10.1111/j.1742-4658.2005.04605.x
[12]  Mendes P, Kell DB (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869–883. doi: 10.1093/bioinformatics/14.10.869
[13]  Quach M, Brunel N, d'Alché Buc F (2007) Estimating parameters and hidden variables in non-linear state-space models based on odes for biological networks inference. Bioinformatics 23: 3209–3216. doi: 10.1093/bioinformatics/btm510
[14]  Sun X, Jin L, Xiong M (2008) Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PloS ONE 3: e3758. doi: 10.1371/journal.pone.0003758
[15]  Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP (2009) Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface 6: 187–202. doi: 10.1098/rsif.2008.0172
[16]  Yang X, Guo Y, Guo L (2013) An iterative parameter estimation method for biological systems and its parallel implementation. Concurrency and Computation: Practice and Experience.
[17]  Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298: 1912–1934. doi: 10.1126/science.1075762
[18]  Forrest AR, Ravasi T, Taylor D, Huber T, Hume DA, et al. (2003) Phosphoregulators: protein kinases and protein phosphatases of mouse. Genome Research 13: 1443–1454. doi: 10.1101/gr.954803
[19]  Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models - a review. Biosystems 96: 86–103. doi: 10.1016/j.biosystems.2008.12.004
[20]  Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nature Reviews Molecular Cell Biology 11: 427–439. doi: 10.1038/nrm2900
[21]  Dunn JD, Reid GE, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrometry Reviews 29: 29–54. doi: 10.1002/mas.20219
[22]  Xiong H, Choe Y (2008) Structural systems identification of genetic regulatory networks. Bioinformatics 24: 553–560. doi: 10.1093/bioinformatics/btm623
[23]  Papin JA, Palsson BO (2004) The jak-stat signaling network in the human b-cell: an extreme signaling pathway analysis. Biophysical journal 87: 37–46. doi: 10.1529/biophysj.103.029884
[24]  Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283: 381–387. doi: 10.1126/science.283.5400.381
[25]  Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284: 92–96. doi: 10.1126/science.284.5411.92
[26]  Frank SA (2002) Chapter 4: specificity and cross-reactivity. In: Immunology and Evolution of Infectious Disease, Princeton University Press.
[27]  Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52: 489–509. doi: 10.1109/tit.2005.862083
[28]  Donoho DL (2006) Compressed sensing. IEEE Transactions on Information Theory 52: 1289–1306. doi: 10.1109/tit.2006.871582
[29]  Candès EJ, Tao T (2006) Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52: 5406–5425. doi: 10.1109/tit.2006.885507
[30]  Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. The Journal of Machine Learning Research 1: 211–244.
[31]  Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Transactions on Signal Processing 56: 2346–2356. doi: 10.1109/tsp.2007.914345
[32]  Bishop CM, Tipping ME (2000) Variational relevance vector machines. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., pp. 46–53.
[33]  August E, Papachristodoulou A (2009) Efficient, sparse biological network determination. BMC Systems Biology 3: 25. doi: 10.1186/1752-0509-3-25
[34]  Yeung MKS, Tegnér J, Collins JJ (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences 99: 6163–6168. doi: 10.1073/pnas.092576199
[35]  Necela BM, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proceedings of the American Thoracic Society 1: 239–246. doi: 10.1513/pats.200402-005ms
[36]  Gallager R (1962) Low-density parity-check codes. IRE Transactions on Information Theory 8: 21–28. doi: 10.1109/tit.1962.1057683

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133