Habitat of In Vivo Transformation Influences the Levels of Free Radical Scavengers in Clinostomum complanatum: Implications for Free Radical Scavenger Based Vaccines against Trematode Infections
Background Since free radical scavengers of parasite origin like glutathione-S-transferase and superoxide dismutase are being explored as prospective vaccine targets, availability of these molecules within the parasite infecting different hosts as well as different sites of infection is of considerable importance. Using Clinostomum complanatum, as a model helminth parasite, we analysed the effects of habitat of in vivo transformation on free radical scavengers of this trematode parasite. Methods Using three different animal models for in vivo transformation and markedly different sites of infection, progenetic metacercaria of C. complanatum were transformed to adult ovigerous worms. Whole worm homogenates were used to estimate the levels of lipid peroxidation, a marker of oxidative stress and free radical scavengers. Results Site of in vivo transformation was found to drastically affect the levels of free radical scavengers in this model trematode parasite. It was observed that oxygen availability at the site of infection probably influences levels of free radical scavengers in trematode parasites. Conclusion This is the first report showing that habitat of in vivo transformation affects levels of free radical scavengers in trematode parasites. Since free radical scavengers are prospective vaccine targets and parasite infection at ectopic sites is common, we propose that infections at different sites, may respond differently to free radical scavenger based vaccines.
References
[1]
Abidi SMA, Nizami WA (1987) Developmental changes and histopathology of Clinostomum complanatum (Trematoda) infection in an experimental host. Indian J Parasitol 11: 235–238.
[2]
Rizvi A, Hasan S, Alam M, Zafar A, Fatima T, et al. (2012) Levels of some antioxidant molecules and lipid peroxidation during in vivo transformation of the progenetic metacercaria of Clinostomum complanatum to ovigerous adult worms. Vet Parasitol 185: 164–7. doi: 10.1016/j.vetpar.2011.10.024
[3]
Rizvi A, Zaidi ZA, Alam MM, Zafar A, Shareef PA, et al. (2012) A rabbit eye model for in vivo transformation of progenetic metacercariae of Clinostomum complanatum into ovigerous adult worms. J Helminthol 11: 1–5. doi: 10.1017/s0022149x12000752
[4]
Larson OR, Uglem GL (1990) Cultivation of Clinostomum marginatum (Digenea: Clinostomatidae) metacercariae in vitro, in chick embryo and in mouse coelom. J Parasitol 76: 505–8. doi: 10.2307/3282829
[5]
Lo CF, Huber F, Kou GH, Lo CJ (1981) Studies of Clinostomum complanatum (Rud.,1814). Fish Pathol 15: 219–227. doi: 10.3147/jsfp.15.219
[6]
Coulibaly ND, Salembere S, Bessin R (1995) Larval Clinostomum infection of cichlid fish in the lake of Kompienga in Burkina Faso: a menace to haleutic exploitation and public health. Sante 5: 189–93.
[7]
Chung DI, Moon CH, Kong HH, Choi DW, Lim DK (1995) The first human case of Clinostomum complanatum (Trematoda: Clinostomidae) infection in Korea. Korean J Parasitol 33: 219–23. doi: 10.3347/kjp.1995.33.3.219
[8]
Kitagawa N, Oda M, Totoki T, Washizaki S, Oda M, et al. (2003) Lidocaine spray used to capture a live Clinostomum parasite causing human laryngitis. Am J Otolaryngol 24: 341–3. doi: 10.1016/s0196-0709(03)00060-7
[9]
Park CW, Kim JS, Joo HS, Kim J (2009) A human case of Clinostomum complanatum infection in Korea. Korean J Parasitol 47: 401–4. doi: 10.3347/kjp.2009.47.4.401
[10]
Dias MLGG, Eiras JC, Machado MH, Souza GTR, Pavanelli GC (2003) The life cycle of Clinostomum complanatum Rudolphi, 1814 (Digenea, Clinostomidae) on the floodplain of the high Paraná river, Brazil. Parasitol Res 89: 506–8. doi: 10.1007/s00436-006-0205-0
[11]
Siddiqui AA, Nizami WA (1982) Seasonal population dynamics of the metacercariae of Clinostomum complanatum (Trematoda: Digenea) in relation to sex of the host. Riv Parasitol 43: 275–279.
[12]
Uglem GL, Larson OR, Aho JM, Lee KJ (1991) Fine structure and sugar transport functions of the tegument in Clinostomum marginatum (Digenea: Clinostomatidae): environmental effects on the adult phenotype. J Parasitol 77: 658–62. doi: 10.2307/3282694
[13]
Rizvi A (2011) Studies on zoonotic potential and oxidative stress, during in vivo development of Clinostomum complanatum, a model trematode parasite. Masters dissertation. Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
[14]
Spector T (1978) Refinement of the coomassie blue method of protein quantitation. Anal Biochem 86: 142–6. doi: 10.1016/0003-2697(78)90327-5
Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469–74. doi: 10.1111/j.1432-1033.1974.tb03714.x
[17]
Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121–6. doi: 10.1016/s0076-6879(84)05016-3
[18]
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–9.
[19]
Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11: 151–69. doi: 10.1159/000136485
[20]
Brophy PM, Patterson LH, Pritchard DL (1995) Secretory nematode SOD–offensive or defensive? Int J Parasitol 25: 865–6. doi: 10.1016/0020-7519(95)00005-m
[21]
Smith NC, Bryant C (1989) The effects of antioxidants on the rejection of Nippostrongylus brasiliensis. Parasite Immunol 11: 161–7. doi: 10.1111/j.1365-3024.1989.tb00656.x
[22]
Chiumiento L, Bruschi F (2009) Enzymatic antioxidant systems in helminth parasites. Parasitol Res 105: 593–603. doi: 10.1007/s00436-009-1483-0
[23]
LoVerde PT, Carvalho-Queiroz C, Cook R (2004) Vaccination with antioxidant enzymes confers protective immunity against challenge infection with Schistosoma mansoni. Mem Inst Oswaldo Cruz 99: 37–43. doi: 10.1590/s0074-02762004000900007
[24]
Grzych JM, De Bont J, Neyrinck JL, Fontaine J, Vercruysse J, et al. (1998) Relationship of impairment of schistosome 28-kilodalton glutathione-S-transferase (GST) activity to expression of immunity to Schistosoma mattheei in calves vaccinated with recombinant Schistosoma bovis 28-kilodalton GST. Infect Immun 66: 1142–8.
[25]
Henkle-Dührsen K, Kampk?tter A (2001) Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol 114: 129–42. doi: 10.1016/s0166-6851(01)00252-3