全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N

DOI: 10.1371/journal.pone.0095955

Full-Text   Cite this paper   Add to My Lib

Abstract:

The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO3?2) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO3?2 and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO3?2 to red elemental selenium. The diameters of particles were 80–200 nm. The bacteria exhibited significant tolerance to SeO3?2 up to 8.0 m mol/L concentration with an EC50 value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO32? up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO3?2 was observed at 2.0, 4.0 and 8.0 m mol/L SeO32? concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO3?2. The finding of this work will contribute to the application of selenium to human health.

References

[1]  Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, et al. (2003) Characterization of mammalian selenoproteomes. Science 300: 1439–1443. doi: 10.1126/science.1083516
[2]  Rayman MP (2012) Selenium and human health. Lancet 379: 1256–1268. doi: 10.1016/s0140-6736(11)61452-9
[3]  Akbaraly NT, Arnaud J, Hininger-Favier I, Gourlet V, Roussel AM, et al. (2005) Selenium and mortality in the elderly: results from the EVA study. Clin Chem 51: 2117–2123. doi: 10.1373/clinchem.2005.055301
[4]  Bleys J, Navas-Acien A, Guallar E (2008) Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168: 404–410. doi: 10.1001/archinternmed.2007.74
[5]  Ray AL, Semba RD, Walston J, Ferrucci L, Cappola AR, et al. (2006) Low serum selenium and total carotenoids predict mortality among older women living in the community: the women's health and aging studies. J Nutr 136: 172–176.
[6]  Broome CS, McArdle F, Kyle JA, Andrews F, Lowe NM, et al. (2004) An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 80: 154–162.
[7]  Hawkes WC, Kelley DS, Taylor PC (2001) The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res 81: 189–213. doi: 10.1385/bter:81:3:189
[8]  Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, et al. (2010) Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140: 1155–1161. doi: 10.3945/jn.109.120725
[9]  Kiremidjian-Schumacher L, Roy M, Glickman R, Schneider K, Rothstein S, et al. (2000) Selenium and immunocompetence in patients with head and neck cancer. Biol Trace Elem Res 73: 97–111. doi: 10.1385/bter:73:2:97
[10]  Rayman MP (2000) The importance of selenium to human health. Lancet 356: 233–241. doi: 10.1016/s0140-6736(00)02490-9
[11]  Wood SM, Beckham C, Yosioka A, Darban H, Watson RR (2000) β-Carotene and selenium supplementation enhances immuneresponse in aged humans. Integr Med 2: 85–92. doi: 10.1016/s1096-2190(00)00009-3
[12]  Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100: 254–268. doi: 10.1017/s0007114508939830
[13]  Reilly C (2006) Selenium in food and health. New York (NY, USA): Springer.
[14]  Johnson CC, Fordyce FM, Rayman MP (2010) Conference on ‘Over- and undernutrition: challenges and approaches’ Symposium on ‘Geographical and geological influences on nutrition’ factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc 69: 119–132. doi: 10.1017/s0029665109991807
[15]  Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42: 1524–1533. doi: 10.1016/j.freeradbiomed.2007.02.013
[16]  Fordyce FM (2005) Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, et al. (eds.). Essentials of medical geology. Elsevier Academic Press, Amsterdam, Holland. 373–416 pp.
[17]  Zhang J, Wang X, Xu T (2007) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101: 22–31. doi: 10.1093/toxsci/kfm221
[18]  Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, et al. (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68: 525–531. doi: 10.1007/s10725-012-9735-x
[19]  Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J (2013) Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: A novel Se-bioassay. Plos One 8(3): e57404 doi:10.1371/journal.pone.0057404.
[20]  Hunter WJ, Kuykendall LD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 55: 344–349. doi: 10.1007/s00284-007-0202-2
[21]  Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58: 493–498. doi: 10.1007/s00284-009-9358-2
[22]  Mishra RR, Prajapati S, Das J, Dangar TK, Das N, et al. (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84: 1231–1237. doi: 10.1016/j.chemosphere.2011.05.025
[23]  Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57: 83–88. doi: 10.1007/s00284-008-9160-6
[24]  Narasingarao P, Haggblom MM (2007) Identification of anaerobic selenate respiring bacteria from aquatic sediments. Appl Environ Microbiol 73: 3519–3527. doi: 10.1128/aem.02737-06
[25]  Bansal V, Ramanathan R, Bhargava SK (2011) Fungus-mediated biological approaches towards ‘Green’ synthesis of oxide nanomaterials. Aust J Chem 64: 279–293. doi: 10.1071/ch10343
[26]  Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interf Sci 179–182: 150–168. doi: 10.1016/j.cis.2012.06.013
[27]  Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller L, et al. (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55: 2333–2343.
[28]  Oremland RS, Steinberg NA, Maest AS, Miller LG, Hollibaugh JT (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ Sci Technol 24: 1157–1164. doi: 10.1021/es00078a001
[29]  Ramanathan R, Field MR, O'Mullane AP, Smooker PM, Bhargava SK, et al. (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5: 2300–2306. doi: 10.1039/c2nr32887a
[30]  Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62: 1490–1499. doi: 10.1016/j.chemosphere.2005.06.014
[31]  Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65: 4734–4740.
[32]  Kessi J (2006) Enzymatic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152: 731–743. doi: 10.1099/mic.0.28240-0
[33]  Moore MD, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174: 1505–1514.
[34]  Ramanathan R, O'Mullane AP, Parikh RY, Smooker PM, Bhargava SK, et al. (2011) Bacterial kinetics-Controlled shape-Directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27: 714–719. doi: 10.1021/la1036162
[35]  Zhang Z, Yang S, Zhao C (1992) Study on isolation and identification of Rhodopseudonas palustris. J Shanxi Univ (Nat Sci) 15: 379–385.
[36]  Ormerod JG, Ormerod KS, Gest H (1961) Light dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94: 449–463. doi: 10.1016/0003-9861(61)90073-x
[37]  Hess WM (1966) Fixation and staining of fungus hyphae and host plant root tissues for electron microscopy. Stain Technol 41: 27–35. doi: 10.3109/10520296609116276
[38]  Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 699: 978–982. doi: 10.1103/physrev.56.978
[39]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
[40]  Lü CJ, Zhang YY, Zhao CG, Guo SW, Yang SP, et al. (2012) Arsenic resistance mechanisms in Rhodopseudomonas palustris under anaerobic and light conditions. Acta Scientiae Circumstantiae 32: 2375–2383.
[41]  Rider CV, LeBlanc GA (2005) An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicol Sci 87: 520–528. doi: 10.1093/toxsci/kfi247
[42]  Zhang Y, Frankenberger WT, Moore JN (1999) Measurement of selenite in sediment extracts by using hydride generation atomic absorption spectrometry. Sci Total Environ 229: 183–193. doi: 10.1016/s0048-9697(99)00061-3
[43]  Getha K, Vikineswary S, Chong VC (1998) Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World J Microb Biot 14: 505–511.
[44]  Zhang J, Zhang S, Xu J, Chen H (2004) A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chinese Chem Lett 15: 1345–1348.
[45]  Bledsoe TL, Cantafio AW, Macy JM (1999) Fermented whey - an inexpensive feed source for a laboratory-scale selenium-bioremediation reactor system inoculated with Thauera selenatis. Appl Microbiol Biotechnol 51: 682–685. doi: 10.1007/s002530051452
[46]  Euzeby J (2008) Validation List no. 121. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 58: 1057. doi: 10.1099/ijs.0.2008/002667-0
[47]  Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite reducing a-Proteobacteria isolated from a bioreactor. Curr Microbiol 55: 455–460. doi: 10.1007/s00284-007-9020-9
[48]  Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G, et al. (1997) Tellurite and selenate reductase activity of nitrate reductases from Escherichia coli: correlation with tellurite resistance. Microbiology 143: 1181–1189. doi: 10.1099/00221287-143-4-1181
[49]  Yanke LJ, Bryant RD, Laishley EJ (1995) Hydrogenase (I) of Clostridium pasteurianum functions as a novel selenite reductase. Anaerobe 1: 61–67.
[50]  Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, et al. (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226: 107–112. doi: 10.1016/s0378-1097(03)00609-8
[51]  Kobayashi M, Kurata S (1978) The mass culture and cell utilization of photosynthetic bacteria. Process Biochem 13: 27–30.
[52]  Garbisu C, Carlson D, Adamkiewicz M, Yee BC, Wong JH, et al. (1999) Morphological and biochemical responses of Bacillus subtilis to selenite stress. Biofactor 10: 311–319. doi: 10.1002/biof.5520100401
[53]  Schmidt MG, Konetzka WA (1986) Glutathion overproduction by selenite-resistant Escherichia coli. Can J Microbiol 32: 825–827. doi: 10.1139/m86-152
[54]  Kinkle BK, Sadowsky MJ, Johnstone K, Koskinen WC (1994) Tellurium and selenium resistance in Rhizobia and its potential use for direct isolation of Rhizobium meliloti from soil. Appl Environ Microb 60: 1674–1677.
[55]  William JH, Kuykendall LD (2007) An Azospira oryzae (syn Dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium. Curr Microbiol 54: 376–381. doi: 10.1007/s00284-006-0474-y
[56]  Bebien M, Chauvin JP, Adriano JM, Grosse S, Vermeglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 67: 4440–4447. doi: 10.1128/aem.67.10.4440-4447.2001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133