全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Rapid Range Expansion Is Not Restricted by Inbreeding in a Sexually Cannibalistic Spider

DOI: 10.1371/journal.pone.0095963

Full-Text   Cite this paper   Add to My Lib

Abstract:

Few studies investigated whether rapid range expansion is associated with an individual's short-term fitness costs due to an increased risk of inbred mating at the front of expansion. In mating systems with low male mating rates both sexes share potential inbreeding costs and general mechanisms to avoid or reduce these costs are expected. The spider Argiope bruennichi expanded its range recently and we asked whether rapid settlement of new sites exposes individuals to a risk of inbreeding. We sampled four geographically separated subpopulations, genotyped individuals, arranged matings and monitored hatching success. Hatching success was lowest in egg-sacs derived from sibling pairs and highest in egg-sacs derived from among-population crosses, while within-population crosses were intermediate. This indicates that inbreeding might affect hatching success in the wild. Unlike expected, differential hatching success of within- and among-population crosses did not correlate with genetic distance of mating pairs. In contrast, we found high genetic diversity based on 16 microsatellite markers and a fragment of the mitochondrial COI gene in all populations. Our results suggest that even a very recent settlement secures the presence of genetically different mating partners. This leads to costs of inbreeding since the population is not inbred.

References

[1]  Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18: 237–268. doi: 10.1146/annurev.ecolsys.18.1.237
[2]  Szulkin M, Stopher KV, Pemberton JM, Reid JM (2013) Inbreeding avoidance, tolerance, or preference in animals? Trends in Ecology & Evolution 28: 205–211. doi: 10.1016/j.tree.2012.10.016
[3]  Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends in Ecology & Evolution 11: 201–206. doi: 10.1016/0169-5347(96)10028-8
[4]  Pusey AE (1987) Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends in Ecology & Evolution 2: 295–299. doi: 10.1016/0169-5347(87)90081-4
[5]  Perrin N, Mazalov V (1999) Dispersal and inbreeding avoidance. American Naturalist 154: 282–292. doi: 10.1086/303236
[6]  Bilde T, Lubin Y, Smith D, Schneider JM, Maklakov AA (2005) The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution 59: 160–174. doi: 10.1554/04-361
[7]  Bukowski TC, Aviles L (2002) Asynchronous maturation of the sexes may limit close inbreeding in a subsocial spider. Canadian Journal of Zoology-Revue Canadienne De Zoologie 80: 193–198. doi: 10.1139/z01-220
[8]  Clarke FM, Miethe GH, Bennett NC (2001) Reproductive suppression in female Damaraland mole-rats Cryptomys damarensis: dominant control or self-restraint? Proceedings of the Royal Society B-Biological Sciences 268: 899–909. doi: 10.1098/rspb.2000.1426
[9]  Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: Invited review. Molecular Ecology 9: 1013–1027. doi: 10.1046/j.1365-294x.2000.00964.x
[10]  Yasui Y (1998) The ‘genetic benefits’ of female multiple mating reconsidered. Trends in Ecology & Evolution 13: 246–250. doi: 10.1016/s0169-5347(98)01383-4
[11]  Lihoreau M, Zimmer C, Rivault C (2007) Kin recognition and incest avoidance in a group-living insect. Behavioral Ecology 18: 880–887. doi: 10.1093/beheco/arm046
[12]  Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. American Naturalist 153: 145–164. doi: 10.1086/303166
[13]  Zeh JA, Zeh DW (1996) The evolution of polyandry I: Intragenomic conflict and genetic incompatibility. Proceedings of the Royal Society B-Biological Sciences 263: 1711–1717. doi: 10.1098/rspb.1996.0250
[14]  Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biological Reviews 75: 21–64. doi: 10.1111/j.1469-185x.1999.tb00040.x
[15]  Firman RC, Simmons LW (2008) The frequency of multiple paternity predicts variation in testes size among island populations of house mice. Journal of Evolutionary Biology 21: 1524–1533. doi: 10.1111/j.1420-9101.2008.01612.x
[16]  Birkhead TR, Moller AP (1995) Extra-pair copulation and extra-pair paternity in birds. Animal Behaviour 49: 843–848. doi: 10.1016/0003-3472(95)80217-7
[17]  Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415: 71–73. doi: 10.1038/415071a
[18]  Bretman A, Newcombe D, Tregenza T (2009) Promiscuous females avoid inbreeding by controlling sperm storage. Molecular Ecology 18: 3340–3345. doi: 10.1111/j.1365-294x.2009.04301.x
[19]  Bretman A, Wedell N, Tregenza T (2004) Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proceedings of the Royal Society B-Biological Sciences 271: 159–164. doi: 10.1098/rspb.2003.2563
[20]  Welke K, Schneider JM (2009) Inbreeding avoidance through cryptic female choice in the cannibalistic orb-web spider Argiope lobata. Behavioral Ecology 20: 1056–1062. doi: 10.1093/beheco/arp097
[21]  Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2: 349–368. doi: 10.1038/hdy.1948.21
[22]  Smith RH (1979) On selection for inbreeding in polygynous animals. Heredity 43: 205–211. doi: 10.1038/hdy.1979.75
[23]  Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum NA, editors. Sexual Selection and Reproductive Competition in Insects: Academic Press. pp. 123–166.
[24]  Welke KW, Zimmer SM, Schneider JM (2012) Conditional monogyny: female quality predicts male faithfulness. Frontiers in Zoology 9..
[25]  Fromhage L, McNamara JM, Houston AI (2008) A model for the evolutionary maintenance of monogyny in spiders. Journal of Theoretical Biology 250: 524–531. doi: 10.1016/j.jtbi.2007.10.008
[26]  Schneider JM, Fromhage L (2010) Monogynous mating strategies in spiders. In: Kappeler P, editor. Animal Behaviour: Evolution and Mechanisms: Springer.
[27]  Herberstein ME, Barry KL, Turoczy MA, Wills E, Youssef C, et al. (2005) Post-copulation mate guarding in the sexually cannibalistic St Andrew's Cross spider (Araneae Araneidae). Ethology Ecology & Evolution 17: 17–26. doi: 10.1080/08927014.2005.9522612
[28]  Miller JA (2007) Repeated evolution of male sacrifice behavior in spiders correlated with genital mutilation. Evolution 61: 1301–1315. doi: 10.1111/j.1558-5646.2007.00115.x
[29]  Mayr E (1963) Animal Species and Evolution. Cambridge, Massachusetts: The Belknap Press of Harvard University Press.
[30]  Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology 17: 1170–1188. doi: 10.1111/j.1365-294x.2007.03659.x
[31]  Simmons LW (2011) Inbreeding depression in the competitive fertilization success of male crickets. Journal of Evolutionary Biology 24: 415–421. doi: 10.1111/j.1420-9101.2010.02179.x
[32]  Bilde T, Maklakov AA, Schilling N (2007) Inbreeding avoidance in spiders: evidence for rescue effect in fecundity of female spiders with outbreeding opportunity. Journal of Evolutionary Biology 20: 1237–1242. doi: 10.1111/j.1420-9101.2006.01280.x
[33]  Aviles L, Bukowski TC (2006) Group living and inbreeding depression in a subsocial spider. Proceedings of the Royal Society B-Biological Sciences 273: 157–163. doi: 10.1098/rspb.2005.3308
[34]  Jamieson IG (2011) Founder Effects, Inbreeding, and Loss of Genetic Diversity in Four Avian Reintroduction Programs. Conservation Biology 25: 115–123. doi: 10.1111/j.1523-1739.2010.01574.x
[35]  Barrett SCH, Charlesworth D (1991) Effects of a change in the level of inbreeding on the genetic load. Nature 352: 522–524. doi: 10.1038/352522a0
[36]  Crnokrak P, Barrett SCH (2002) Perspective: Purging the genetic load: A review of the experimental evidence. Evolution 56: 2347–2358. doi: 10.1111/j.0014-3820.2002.tb00160.x
[37]  Purcell KM, Ling N, Stockwell CA (2012) Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biological Invasions 14: 2057–2065. doi: 10.1007/s10530-012-0213-1
[38]  Kumschick S, Fronzek S, Entling MH, Nentwig W (2011) Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change? Climatic Change 109: 319–329. doi: 10.1007/s10584-011-0139-0
[39]  Suter RB (1991) Ballooning in spiders - results of wind-tunnel experiments. Ethology Ecology & Evolution 3: 13–25. doi: 10.1080/08927014.1991.9525385
[40]  Bonte D, Vandenbroecke N, Lens L, Maelfait JP (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proceedings of the Royal Society B-Biological Sciences 270: 1601–1607. doi: 10.1098/rspb.2003.2432
[41]  Scopoli JA (1772) Observationes zoologicae. in: Annus V, Historico-naturalis Lipsiae, pp70–128 (Araneae, pp125–126).
[42]  Krehenwinkel H, Tautz D (2013) Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming-correlated genetic admixture and population-specific temperature adaptations. Molecular Ecology 22: 2232–2248. doi: 10.1111/mec.12223
[43]  Guttmann R (1979) Zur Arealentwicklung und ?kologie der Wespenspinne (Argiope bruennichi) in der Bundesrepublik Deutschland und den angrenzenden L?ndern (Araneae). Bonner zoologische Beitr?ge 30: 454–486.
[44]  Foelix RF (2011) Biology of Spiders. New York: Oxford University Press.
[45]  Uhl G, Nessler SH, Schneider J (2007) Copulatory mechanism in a sexually cannibalistic spider with genital mutilation (Araneae: Araneidae: Argiope bruennichi). Zoology 110: 398–408. doi: 10.1016/j.zool.2007.07.003
[46]  Nessler SH, Uhl G, Schneider JM (2007) Genital damage in the orb-web spider Argiope bruennichi (Araneae: Araneidae) increases paternity success. Behavioral Ecology 18: 174–181. doi: 10.1093/beheco/arl074
[47]  Schneider JM, Gilberg S, Fromhage L, Uhl G (2006) Sexual conflict over copulation duration in a cannibalistic spider. Animal Behaviour 71: 781–788. doi: 10.1016/j.anbehav.2005.05.012
[48]  Foellmer MW, Fairbairn DJ (2003) Spontaneous male death during copulation in an orb-weaving spider. Proceedings of the Royal Society B-Biological Sciences 270: S183–S185. doi: 10.1098/rsbl.2003.0042
[49]  Sasaki T, Iwahashi O (1995) Sexual cannibalism in an orb-weaving spider Argiope aemula. Animal Behaviour 49: 1119–1121. doi: 10.1006/anbe.1995.0140
[50]  Crome W, Crome I (1961) Paarung und Eiablage bei Argyope bruennichi (Scopoli) auf Grund von Freilandbeobachtungen an zwei Populationen im Spreewald/Mark Brandenburg (Araneae: Araneidae). Mitteilungen aus dem Zoologischen Museum in Berlin 37: 189–252.
[51]  Zimmer SM, Welke KW, Schneider JM (2012) Determinants of Natural Mating Success in the Cannibalistic Orb-Web Spider Argiope bruennichi. PloS one 7: e31389. doi: 10.1371/journal.pone.0031389
[52]  Dieringer D, Schlotterer C (2003) Microsatellite Analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3: 167–169. doi: 10.1046/j.1471-8286.2003.00351.x
[53]  Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538. doi: 10.1111/j.1471-8286.2004.00684.x
[54]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599. doi: 10.1093/molbev/msm092
[55]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
[56]  Zar JH (1996) Biostatistical Analysis. Upper Saddle River, New Jersey: Prentice Hall Inc.
[57]  Bretman A, Rodriguez-Munoz R, Walling C, Slate J, Tregenza T (2011) Fine-scale population structure, inbreeding risk and avoidance in a wild insect population. Molecular Ecology 20: 3045–3055. doi: 10.1111/j.1365-294x.2011.05140.x
[58]  Hardy OJ, Pearcy M, Aron S (2008) Small-scale spatial genetic structure in an ant species with sex-biased dispersal. Biological Journal of the Linnean Society 93: 465–473. doi: 10.1111/j.1095-8312.2007.00898.x
[59]  Schaefer M (1977) Winter ecology of spiders (Araneida). Zeitschrift Fur Angewandte Entomologie-Journal of Applied Entomology 83: 113–134. doi: 10.1111/j.1439-0418.1977.tb02381.x
[60]  Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bulletin of Entomological Research 95: 69–114. doi: 10.1079/ber2004350
[61]  Ruch J, Heinrich L, Bilde T, Schneider JM (2009) The evolution of social inbreeding mating systems in spiders: limited male mating dispersal and lack of pre-copulatory inbreeding avoidance in a subsocial predecessor. Biological Journal of the Linnean Society 98: 851–859. doi: 10.1111/j.1095-8312.2009.01322.x
[62]  Zeh JA, Zeh DW (1997) The evolution of polyandry. 2. Post-copulatory defences against genetic incompatibility. Proceedings of the Royal Society of London Series B-Biological Sciences 264: 69–75. doi: 10.1098/rspb.1997.0010
[63]  Schneider JM, Lesmono K (2009) Courtship raises male fertilization success through post-mating sexual selection in a spider. Proceedings of the Royal Society B-Biological Sciences 276: 3105–3111. doi: 10.1098/rspb.2009.0694
[64]  Elgar MA, Schneider JM, Herberstein ME (2000) Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi. Proceedings of the Royal Society B-Biological Sciences 267: 2439–2443. doi: 10.1098/rspb.2000.1303
[65]  Welke KW, Schneider JM (2010) Males of the orb-web spider Argiope bruennichi sacrifice themselves to unrelated females. Biology Letters 6: 585–588. doi: 10.1098/rsbl.2010.0214
[66]  Fromhage L, Schneider JM (2012) A mate to die for? A model of conditional monogyny in cannibalistic spiders. Ecology and Evolution 2: 2572–2582. doi: 10.1002/ece3.372
[67]  Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends in Ecology & Evolution 19: 613–615. doi: 10.1016/j.tree.2004.09.010
[68]  Grueber CE, Waters JM, Jamieson IG (2011) The imprecision of heterozygosity-fitness correlations hinders the detection of inbreeding and inbreeding depression in a threatened species. Molecular Ecology 20: 67–79. doi: 10.1111/j.1365-294x.2010.04930.x
[69]  Walter A, Bliss P, Moritz RFA (2005) The wasp spider Argiope bruennichi (Arachnida, Araneidae): Ballooning is not an obligate life history phase. Journal of Arachnology 33: 516–522. doi: 10.1636/04-78.1
[70]  Follner K, Klarenberg A (1995) Aeronautic behaviour in the wasp-like spider, Argiope bruennichi (Scopoli) (Araneae, Argiopidae). In: Rú?i?ka V, editor. Proceedings of the 15th European Colloquium of Arachnology, ?eské Bude?jovice 1994. ?eské Bude?jovice: Czech Academy of Sciences, Institute of Entomology.
[71]  Rutten KB, Schulz I, Olek K, Uhl G (2001) Polymorphic microsatellite markers in the spider Pholcus phalangioides isolated from a library enriched for CA repeats. Molecular Ecology Notes 1: 255–257. doi: 10.1046/j.1471-8278.2001.00096.x
[72]  Bilde T, Tuni C, Cariani A, Santini A, Tabarroni C, et al. (2009) Characterization of microsatellite loci in the subsocial spider Stegodyphus lineatus (Araneae: Eresidae). Molecular Ecology Resources 9: 128–130. doi: 10.1111/j.1755-0998.2008.02296.x
[73]  Schulte KF, Uhl G, Schneider JM (2010) Mate choice in males with one-shot genitalia: limited importance of female fecundity. Animal Behaviour 80: 699–706. doi: 10.1016/j.anbehav.2010.07.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133