全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effects of siRNA on RET/PTC3 Junction Oncogene in Papillary Thyroid Carcinoma: From Molecular and Cellular Studies to Preclinical Investigations

DOI: 10.1371/journal.pone.0095964

Full-Text   Cite this paper   Add to My Lib

Abstract:

RET/PTC3 junction oncogene is typical of radiation-induced childhood papillary thyroid carcinoma (PTC) with a short latency period. Since, RET/PTC3 is only present in the tumour cells, thus represents an interesting target for specific therapy by small interfering RNA (siRNA). Our aim is to demonstrate in vitro and in vivo molecular and cellular effects of siRNA on RET/PTC3 knockdown for therapeutic application.First, we established a novel cell line stably expressing RET/PTC3 junction oncogene, named RP3 which was found tumorigenic in nude mice compared to NIH/3T3 mouse fibroblasts. Among four siRNAs and five concentrations tested against RET/PTC3, an efficient siRNA RET/PTC3 and an appropriate dose (50 nM) were selected which showed significant inhibition (p<0.001) of gene (RT-qPCR) and protein (Western blot) expressions. This siRNA was found efficient in RP3 cells (harbouring RET/PTC3) but non-efficient in BHP10-3 SCmice cell line (harbouring RET/PTC1) showing that a specific siRNA against fusion sequence is required to target the junction oncogene. In vitro siRNA RET/PTC3 showed significant (p<0.001) inhibitory effects on RP3 cell viability (MTT assay) and on invasion/migration (IncuCyte scratch test) with blockage of cell cycle at G0/G1 phase (flow cytometry) and induced apoptosis by caspase-3 and PARP1 cleavage (WB). After intravenous injection in nude mice, respective squalene (SQ) nanoparticles (NPs) of siRNA RET/PTC3 significantly (p<0.001) reduced RP3 tumour growth, oncogene and oncoprotein expressions, induced apoptosis and partially restored differentiation (decrease in Ki67). Hence, our findings highly support the use of siRNA RET/PTC3-SQ NPs as a new promising treatment for patients affected by PTC expressing RET/PTC3.

References

[1]  Vivero M, Kraft S, Barletta JA (2013) Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid 23: 273–279. doi: 10.1089/thy.2012.0369
[2]  LiVolsi VA (2011) Papillary thyroid carcinoma: an update. Mod Pathol 24 Suppl 2S1–9. doi: 10.1038/modpathol.2010.129
[3]  Jhiang SM (2000) The RET proto-oncogene in human cancers. Oncogene 19: 5590–5597. doi: 10.1038/sj.onc.1203857
[4]  Di Cristofaro J, Vasko V, Savchenko V, Cherenko S, Larin A, et al. (2005) ret/PTC1 and ret/PTC3 in thyroid tumors from Chernobyl liquidators: comparison with sporadic tumors from Ukrainian and French patients. Endocr Relat Cancer 12: 173–183. doi: 10.1677/erc.1.00884
[5]  Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91: 3603–3610. doi: 10.1210/jc.2006-1006
[6]  Marotta V, Guerra A, Sapio MR, Vitale M (2011) RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol 165: 499–507. doi: 10.1530/eje-11-0499
[7]  Tallini G, Asa SL (2001) RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8: 345–354. doi: 10.1097/00125480-200111000-00005
[8]  Santoro M, Melillo RM, Fusco A (2006) RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 155: 645–653. doi: 10.1530/eje.1.02289
[9]  Romei C, Elisei R (2012) RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 3: 54. doi: 10.3389/fendo.2012.00054
[10]  Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, et al. (1994) Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9: 509–516.
[11]  Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, et al. (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290: 138–141. doi: 10.1126/science.290.5489.138
[12]  Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM (1995) High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene 11: 2459–2467.
[13]  Nakazawa T, Kondo T, Kobayashi Y, Takamura N, Murata S, et al. (2005) RET gene rearrangements (RET/PTC1 and RET/PTC3) in papillary thyroid carcinomas from an iodine-rich country (Japan). Cancer 104: 943–951. doi: 10.1002/cncr.21270
[14]  Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA (1997) Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57: 1690–1694.
[15]  McLeod DS, Sawka AM, Cooper DS (2013) Controversies in primary treatment of low-risk papillary thyroid cancer. Lancet 381: 1046–1057. doi: 10.1016/s0140-6736(12)62205-3
[16]  Ali HM, Urbinati G, Raouane M, Massaad-Massade L (2012) Significance and applications of nanoparticles in siRNA delivery for cancer therapy. Expert Rev Clin Pharmacol 5: 403–412. doi: 10.1586/ecp.12.33
[17]  Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12: 967–977. doi: 10.1038/nmat3765
[18]  Raouane M, Desmaele D, Urbinati G, Massade L, Couvreur P (2012) Lipid conjugated oligonucleotides: A useful strategy for delivery. Bioconjug Chem 23: 1091–1104. doi: 10.1021/bc200422w
[19]  Ali HM, Maksimenko A, Urbinati G, Chapuis H, Raouane M, et al. (2014) Effects of silencing RET/PTC1 oncogene in papillary thyroid carcinoma by siRNA-squalene nanoparticles with and without fusogenic companion GALA-Cholesterol. Thyroid 24: 327–338. doi: 10.1089/thy.2012.0544
[20]  Raouane M, Desmaele D, Gilbert-Sirieix M, Gueutin C, Zouhiri F, et al. (2011) Synthesis, characterization, and in vivo delivery of siRNA-squalene nanoparticles targeting fusion oncogene in papillary thyroid carcinoma. J Med Chem 54: 4067–4076. doi: 10.1021/jm2000272
[21]  Couvreur P, Stella B, Reddy LH, Hillaireau H, Dubernet C, et al. (2006b) Squalenoyl nanomedicines as potential therapeutics. Nano Lett 6: 2544–2548. doi: 10.1021/nl061942q
[22]  Hillaireau H, Dereuddre-Bosquet N, Skanji R, Bekkara-Aounallah F, Caron J, et al. (2013) Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials 34: 4831–4838. doi: 10.1016/j.biomaterials.2013.03.022
[23]  Desmaele D, Gref R, Couvreur P (2012) Squalenoylation: a generic platform for nanoparticular drug delivery. J Control Release 161: 609–618. doi: 10.1016/j.jconrel.2011.07.038
[24]  Ahn SH, Henderson Y, Kang Y, Chattopadhyay C, Holton P, et al. (2008) An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Arch Otolaryngol Head Neck Surg 134: 190–197. doi: 10.1001/archoto.2007.36
[25]  Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22: 326–330. doi: 10.1038/nbt936
[26]  Gilbert-Sirieix M, Ripoche H, Malvy C, Massaad-Massade L (2010) Effects of silencing RET/PTC1 junction oncogene in human papillary thyroid carcinoma cells. Thyroid 20: 1053–1065. doi: 10.1089/thy.2010.0006
[27]  Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20: 446–448. doi: 10.1038/nbt0502-446
[28]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[29]  Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, et al. (2013) High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 4: 48–63.
[30]  Schulze-Osthoff K, Krammer PH, Droge W (1994) Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 13: 4587–4596.
[31]  Meurette O, Rebillard A, Huc L, Le Moigne G, Merino D, et al. (2007) TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res 67: 218–226. doi: 10.1158/0008-5472.can-06-1610
[32]  Wilson CA, Browning JL (2002) Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ 9: 1321–1333. doi: 10.1038/sj.cdd.4401107
[33]  Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129–138. doi: 10.1038/nrd2742

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133