[1] | Mannervik B, Aronsson AC, Tibbelin G (1982) Glyoxalase-I from human erythrocytes. Methods in Enzymology 90: 535–541. doi: 10.1016/s0076-6879(82)90181-1
|
[2] | Oray B, and Norton, S J. (1982) Glyoxalase II from Mouse Liver. Methods Enzymol. pp. 547–551.
|
[3] | Maiti MK, Krishnasamy S, Owen HA, Makaroff CA (1997) Molecular characterization of glyoxalase II from Arabidopsis thaliana. Plant Molecular Biology 35: 471–481. doi: 10.1023/a:1005891123344
|
[4] | Norton SJ, Talesa V, Yuan WJ, Principato GB (1990) Glyoxalase-I and Glyoxalase-II from aloe-vera -purification, characterization and comparison with animal glyoxalases. Biochemistry International 22: 411–418.
|
[5] | Bito A, Haider M, Briza P, Strasser P, Breitenbach M (1999) Heterologous expression, purification, and kinetic comparison of the cytoplasmic and mitochondrial glyoxalase II enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae. Protein Expression and Purification 17: 456–464. doi: 10.1006/prep.1999.1151
|
[6] | Rhee H, Murata K, Kimura A (1986) Purification and characterization of Glyoxalase-I from Pseudomonas putida. Biochemical and Biophysical Research Communications 141: 993–999. doi: 10.1016/s0006-291x(86)80142-5
|
[7] | Thornalley PJ (1990) The Glyoxalase system - New developments towards functional-characterization of a metabolic pathway fundamental to biological life. Biochemical Journal 269: 1–11.
|
[8] | Thornalley PJ (2003) Glyoxalase I - structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions 31: 1343–1348. doi: 10.1042/bst0311343
|
[9] | Marmst E, Mannervik B (1978) Subunit Structure of Glyoxalase I from Yeast. 85: 275–278. doi: 10.1016/0014-5793(78)80472-4
|
[10] | Irsch T, Krauth-Siegel RL (2004) Glyoxalase II of African trypanosomes is trypanothione-dependent. Journal of Biological Chemistry 279: 22209–22217. doi: 10.1074/jbc.m401240200
|
[11] | Richard JP (1984) Acid-Base catalysis of the elimination and isomerization - reactions of triose phosphates. Journal of the American Chemical Society 106: 4926–4936. doi: 10.1021/ja00329a050
|
[12] | Richard JP (1991) Kinetic-parameters for the elimination-reaction catalyzed by triosephosphate isomerase and an estimation of the reactions physiological significance. Biochemistry 30: 4581–4585. doi: 10.1021/bi00232a031
|
[13] | Pompliano DL, Peyman A, Knowles JR (1990) Stabilization of a reaction intermediate as acatalytic device- definition of the functional -role of the flexible loop in triosephosphate isomerase. Biochemistry 29: 3186–3194. doi: 10.1021/bi00465a005
|
[14] | Ohmori S, Mori M, Shiraha K, Kawase M (1989) Biosynthesis and degradation of methylglyoxal in animals. Progress in clinical and biological research 290: 397–412.
|
[15] | Ray M, Ray S (1987) Aminoacetone oxidase from goat liver-formation of methylglyoxal from aminoacetone. Journal of Biological Chemistry 262: 5974–5977.
|
[16] | Casazza JP, Felver ME, Veech RL (1984) The metabolism of acetone in rat. Journal of Biological Chemistry 259: 231–236.
|
[17] | Han LPB, Vanderjagt DL (1975) Purification and kinetic study of rat-liver glyoxalase-I (S-lactoylglutathione methylglyoxal lyase(isomerizing),EC 4.4.1.5). Federation Proceedings 34: 496–496.
|
[18] | Kurasawa S, Takeuchi T, Umezawa H (1976) Reaction-mechanism of rat-liver glyoxalase I and its inhibition by MS-3. Agricultural and Biological Chemistry 40: 559–566. doi: 10.1271/bbb1961.40.559
|
[19] | Uotila L (1973) Purification and characterization of S-2-hydroxyacylglutathione hydrolase (Glyoxalase-II) from human liver. Biochemistry 12: 3944–3951. doi: 10.1021/bi00744a025
|
[20] | Ball JC, Vanderjagt DL (1979) Mechanism studies of rat erythrocyte Glyoxalase-II, a specific thiolesterase. Abstracts of Papers of the American Chemical Society: 44–44.
|
[21] | Ridderstrom M, Saccucci F, Hellmann U, Bergman T, Principato G, et al. (1996) Molecular cloning, heterologous expression, and characterization of human glyoxalase II. Journal of Biological Chemistry 271: 319–323. doi: 10.1074/jbc.271.1.319
|
[22] | Ridderstrom M, Mannervik B (1997) Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana. Biochemical Journal 322: 449–454.
|
[23] | Holdorf MM, Bennett B, Crowder MW, Makaroff CA (2008) Spectroscopic studies on Arabidopsis ETHE1, a glyoxalase II-like protein. Journal of Inorganic Biochemistry 102: 1825–1830. doi: 10.1016/j.jinorgbio.2008.06.003
|
[24] | Holdorf MM, Owen HA, Lieber SR, Yuan L, Adams N, et al. (2012) Arabidopsis ETHE1 Encodes a Sulfur Dioxygenase That Is Essential for Embryo and Endosperm Development. Plant Physiology 160: 226–236. doi: 10.1104/pp.112.201855
|
[25] | Marasinghe GPK, Sander IM, Bennett B, Periyannan G, Yang KW, et al. (2005) Structural studies on a mitochondrial glyoxalase II. Journal of Biological Chemistry 280: 40668–40675. doi: 10.1074/jbc.m509748200
|
[26] | Crowder MW, Maiti MK, Banovic L, Makaroff CA (1997) Glyoxalase II from A-thaliana requires Zn(II) for catalytic activity. Febs Letters 418: 351–354. doi: 10.1016/s0014-5793(97)01416-6
|
[27] | Zang TM, Hollman DA, Crawford PA, Crowder MW, Makaroff CA (2001) Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. Journal of Biological Chemistry 276: 4788–4795. doi: 10.1074/jbc.m005090200
|
[28] | Limphong P, Crowder MW, Bennett B, Makaroff CA (2009) Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2. Biochemical Journal 417: 323–330. doi: 10.1042/bj20081151
|
[29] | Limphong P, Nimako G, Thomas PW, Fast W, Makaroff CA, et al. (2009) Arabidopsis thaliana Mitochondrial Glyoxalase 2-1 Exhibits beta-Lactamase Activity. Biochemistry 48: 8491–8493. doi: 10.1021/bi9010539
|
[30] | Limphong P, Adams NE, Rouhier MF, McKinney RM, Naylor M, et al. (2010) Converting GLX2-1 into an Active Glyoxalase II. Biochemistry 49: 8228–8236. doi: 10.1021/bi1010865
|
[31] | Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136: 2621–2632. doi: 10.1104/pp.104.046367
|
[32] | Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, et al. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35: D863–D869. doi: 10.1093/nar/gkl783
|
[33] | Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37: 914–939. doi: 10.1111/j.1365-313x.2004.02016.x
|
[34] | Miller PH, Wiggs LS, Miller JM (1995) Evaluation of anaerogen system for growth of anaerobic-bacteria. Journal of Clinical Microbiology 33: 2388–2391.
|
[35] | Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x
|
[36] | Erban A, Schauer N, Fernie A, Kopka J (2007) Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Totowa, Methods Mol Biol. N.J.: Humana Press. pp. 19–38.
|
[37] | Allwood JW, Erban A, de Koning S, Dunn WB, Luedemann A, et al. (2009) Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics 5: 479–496. doi: 10.1007/s11306-009-0169-z
|
[38] | Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography - mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24: 732–737. doi: 10.1093/bioinformatics/btn023
|
[39] | Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J (2008) Retention index thresholds for compound matching in GC-MS metabolite profiling. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 871: 182–190. doi: 10.1016/j.jchromb.2008.04.042
|
[40] | Daub CO, Kloska S, Selbig J (2003) MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19: 2332–2333. doi: 10.1093/bioinformatics/btg321
|
[41] | Saeed AI, Sharov V, White J, Li J, Liang W, et al.. (2003) TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34: : 374–+.
|
[42] | Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences of the United States of America 96: 5844–5849. doi: 10.1073/pnas.96.10.5844
|
[43] | Yang SO, Wang SC, Liu XG, Yu Y, Yue L, et al. (2009) Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. Febs Journal 276: 7177–7186. doi: 10.1111/j.1742-4658.2009.07428.x
|
[44] | Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868. doi: 10.1126/science.276.5320.1865
|
[45] | Tian C, Muto H, Higuchi K, Matamura T, Tatematsu K, et al. (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant Journal 40: 333–343. doi: 10.1111/j.1365-313x.2004.02220.x
|
[46] | Mohanty B, Krishnan SPT, Swarup S, Bajic VB (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Annals of Botany 96: 669–681.
|
[47] | Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, et al. (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiology 138: 2075–2086. doi: 10.1104/pp.105.059766
|
[48] | Ding D, Zhang LF, Wang H, Liu ZJ, Zhang ZX, et al. (2009) Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany 103: 29–38.
|
[49] | Bray EA B-SJ, Weretilnyk E. (2000) Responses to abiotic stresses. In: Gruissem W BB, Rockville JR, editor. Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologists. pp. 1158–1249.
|
[50] | Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry 72: 3573–3580. doi: 10.1021/ac991142i
|
[51] | Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology 48: 155–171. doi: 10.1007/978-94-010-0448-0_11
|
[52] | Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, et al. (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters 28: 1867–1876. doi: 10.1007/s10529-006-9179-3
|
[53] | Ellis MH, Dennis ES, Peacock WJ (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiology 119: 57–64. doi: 10.1104/pp.119.1.57
|
[54] | Liu J, Wu YH, Yan JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. Journal of Plant Biology 51: 11–19. doi: 10.1007/bf03030735
|
[55] | Nelson DE, Rammesmayer G, Bohnert HJ (1998) Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10: 753–764. doi: 10.2307/3870662
|
[56] | Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, et al. (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant Physiology 122: 747–756. doi: 10.1104/pp.122.3.747
|