全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Arabidopsis thaliana Glyoxalase 2-1 Is Required during Abiotic Stress but Is Not Essential under Normal Plant Growth

DOI: 10.1371/journal.pone.0095971

Full-Text   Cite this paper   Add to My Lib

Abstract:

The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.

References

[1]  Mannervik B, Aronsson AC, Tibbelin G (1982) Glyoxalase-I from human erythrocytes. Methods in Enzymology 90: 535–541. doi: 10.1016/s0076-6879(82)90181-1
[2]  Oray B, and Norton, S J. (1982) Glyoxalase II from Mouse Liver. Methods Enzymol. pp. 547–551.
[3]  Maiti MK, Krishnasamy S, Owen HA, Makaroff CA (1997) Molecular characterization of glyoxalase II from Arabidopsis thaliana. Plant Molecular Biology 35: 471–481. doi: 10.1023/a:1005891123344
[4]  Norton SJ, Talesa V, Yuan WJ, Principato GB (1990) Glyoxalase-I and Glyoxalase-II from aloe-vera -purification, characterization and comparison with animal glyoxalases. Biochemistry International 22: 411–418.
[5]  Bito A, Haider M, Briza P, Strasser P, Breitenbach M (1999) Heterologous expression, purification, and kinetic comparison of the cytoplasmic and mitochondrial glyoxalase II enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae. Protein Expression and Purification 17: 456–464. doi: 10.1006/prep.1999.1151
[6]  Rhee H, Murata K, Kimura A (1986) Purification and characterization of Glyoxalase-I from Pseudomonas putida. Biochemical and Biophysical Research Communications 141: 993–999. doi: 10.1016/s0006-291x(86)80142-5
[7]  Thornalley PJ (1990) The Glyoxalase system - New developments towards functional-characterization of a metabolic pathway fundamental to biological life. Biochemical Journal 269: 1–11.
[8]  Thornalley PJ (2003) Glyoxalase I - structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions 31: 1343–1348. doi: 10.1042/bst0311343
[9]  Marmst E, Mannervik B (1978) Subunit Structure of Glyoxalase I from Yeast. 85: 275–278. doi: 10.1016/0014-5793(78)80472-4
[10]  Irsch T, Krauth-Siegel RL (2004) Glyoxalase II of African trypanosomes is trypanothione-dependent. Journal of Biological Chemistry 279: 22209–22217. doi: 10.1074/jbc.m401240200
[11]  Richard JP (1984) Acid-Base catalysis of the elimination and isomerization - reactions of triose phosphates. Journal of the American Chemical Society 106: 4926–4936. doi: 10.1021/ja00329a050
[12]  Richard JP (1991) Kinetic-parameters for the elimination-reaction catalyzed by triosephosphate isomerase and an estimation of the reactions physiological significance. Biochemistry 30: 4581–4585. doi: 10.1021/bi00232a031
[13]  Pompliano DL, Peyman A, Knowles JR (1990) Stabilization of a reaction intermediate as acatalytic device- definition of the functional -role of the flexible loop in triosephosphate isomerase. Biochemistry 29: 3186–3194. doi: 10.1021/bi00465a005
[14]  Ohmori S, Mori M, Shiraha K, Kawase M (1989) Biosynthesis and degradation of methylglyoxal in animals. Progress in clinical and biological research 290: 397–412.
[15]  Ray M, Ray S (1987) Aminoacetone oxidase from goat liver-formation of methylglyoxal from aminoacetone. Journal of Biological Chemistry 262: 5974–5977.
[16]  Casazza JP, Felver ME, Veech RL (1984) The metabolism of acetone in rat. Journal of Biological Chemistry 259: 231–236.
[17]  Han LPB, Vanderjagt DL (1975) Purification and kinetic study of rat-liver glyoxalase-I (S-lactoylglutathione methylglyoxal lyase(isomerizing),EC 4.4.1.5). Federation Proceedings 34: 496–496.
[18]  Kurasawa S, Takeuchi T, Umezawa H (1976) Reaction-mechanism of rat-liver glyoxalase I and its inhibition by MS-3. Agricultural and Biological Chemistry 40: 559–566. doi: 10.1271/bbb1961.40.559
[19]  Uotila L (1973) Purification and characterization of S-2-hydroxyacylglutathione hydrolase (Glyoxalase-II) from human liver. Biochemistry 12: 3944–3951. doi: 10.1021/bi00744a025
[20]  Ball JC, Vanderjagt DL (1979) Mechanism studies of rat erythrocyte Glyoxalase-II, a specific thiolesterase. Abstracts of Papers of the American Chemical Society: 44–44.
[21]  Ridderstrom M, Saccucci F, Hellmann U, Bergman T, Principato G, et al. (1996) Molecular cloning, heterologous expression, and characterization of human glyoxalase II. Journal of Biological Chemistry 271: 319–323. doi: 10.1074/jbc.271.1.319
[22]  Ridderstrom M, Mannervik B (1997) Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana. Biochemical Journal 322: 449–454.
[23]  Holdorf MM, Bennett B, Crowder MW, Makaroff CA (2008) Spectroscopic studies on Arabidopsis ETHE1, a glyoxalase II-like protein. Journal of Inorganic Biochemistry 102: 1825–1830. doi: 10.1016/j.jinorgbio.2008.06.003
[24]  Holdorf MM, Owen HA, Lieber SR, Yuan L, Adams N, et al. (2012) Arabidopsis ETHE1 Encodes a Sulfur Dioxygenase That Is Essential for Embryo and Endosperm Development. Plant Physiology 160: 226–236. doi: 10.1104/pp.112.201855
[25]  Marasinghe GPK, Sander IM, Bennett B, Periyannan G, Yang KW, et al. (2005) Structural studies on a mitochondrial glyoxalase II. Journal of Biological Chemistry 280: 40668–40675. doi: 10.1074/jbc.m509748200
[26]  Crowder MW, Maiti MK, Banovic L, Makaroff CA (1997) Glyoxalase II from A-thaliana requires Zn(II) for catalytic activity. Febs Letters 418: 351–354. doi: 10.1016/s0014-5793(97)01416-6
[27]  Zang TM, Hollman DA, Crawford PA, Crowder MW, Makaroff CA (2001) Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. Journal of Biological Chemistry 276: 4788–4795. doi: 10.1074/jbc.m005090200
[28]  Limphong P, Crowder MW, Bennett B, Makaroff CA (2009) Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2. Biochemical Journal 417: 323–330. doi: 10.1042/bj20081151
[29]  Limphong P, Nimako G, Thomas PW, Fast W, Makaroff CA, et al. (2009) Arabidopsis thaliana Mitochondrial Glyoxalase 2-1 Exhibits beta-Lactamase Activity. Biochemistry 48: 8491–8493. doi: 10.1021/bi9010539
[30]  Limphong P, Adams NE, Rouhier MF, McKinney RM, Naylor M, et al. (2010) Converting GLX2-1 into an Active Glyoxalase II. Biochemistry 49: 8228–8236. doi: 10.1021/bi1010865
[31]  Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136: 2621–2632. doi: 10.1104/pp.104.046367
[32]  Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, et al. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35: D863–D869. doi: 10.1093/nar/gkl783
[33]  Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37: 914–939. doi: 10.1111/j.1365-313x.2004.02016.x
[34]  Miller PH, Wiggs LS, Miller JM (1995) Evaluation of anaerogen system for growth of anaerobic-bacteria. Journal of Clinical Microbiology 33: 2388–2391.
[35]  Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x
[36]  Erban A, Schauer N, Fernie A, Kopka J (2007) Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Totowa, Methods Mol Biol. N.J.: Humana Press. pp. 19–38.
[37]  Allwood JW, Erban A, de Koning S, Dunn WB, Luedemann A, et al. (2009) Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics 5: 479–496. doi: 10.1007/s11306-009-0169-z
[38]  Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography - mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24: 732–737. doi: 10.1093/bioinformatics/btn023
[39]  Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J (2008) Retention index thresholds for compound matching in GC-MS metabolite profiling. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 871: 182–190. doi: 10.1016/j.jchromb.2008.04.042
[40]  Daub CO, Kloska S, Selbig J (2003) MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19: 2332–2333. doi: 10.1093/bioinformatics/btg321
[41]  Saeed AI, Sharov V, White J, Li J, Liang W, et al.. (2003) TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34: : 374–+.
[42]  Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences of the United States of America 96: 5844–5849. doi: 10.1073/pnas.96.10.5844
[43]  Yang SO, Wang SC, Liu XG, Yu Y, Yue L, et al. (2009) Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. Febs Journal 276: 7177–7186. doi: 10.1111/j.1742-4658.2009.07428.x
[44]  Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868. doi: 10.1126/science.276.5320.1865
[45]  Tian C, Muto H, Higuchi K, Matamura T, Tatematsu K, et al. (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant Journal 40: 333–343. doi: 10.1111/j.1365-313x.2004.02220.x
[46]  Mohanty B, Krishnan SPT, Swarup S, Bajic VB (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Annals of Botany 96: 669–681.
[47]  Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, et al. (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiology 138: 2075–2086. doi: 10.1104/pp.105.059766
[48]  Ding D, Zhang LF, Wang H, Liu ZJ, Zhang ZX, et al. (2009) Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany 103: 29–38.
[49]  Bray EA B-SJ, Weretilnyk E. (2000) Responses to abiotic stresses. In: Gruissem W BB, Rockville JR, editor. Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologists. pp. 1158–1249.
[50]  Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry 72: 3573–3580. doi: 10.1021/ac991142i
[51]  Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology 48: 155–171. doi: 10.1007/978-94-010-0448-0_11
[52]  Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, et al. (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters 28: 1867–1876. doi: 10.1007/s10529-006-9179-3
[53]  Ellis MH, Dennis ES, Peacock WJ (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiology 119: 57–64. doi: 10.1104/pp.119.1.57
[54]  Liu J, Wu YH, Yan JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. Journal of Plant Biology 51: 11–19. doi: 10.1007/bf03030735
[55]  Nelson DE, Rammesmayer G, Bohnert HJ (1998) Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10: 753–764. doi: 10.2307/3870662
[56]  Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, et al. (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant Physiology 122: 747–756. doi: 10.1104/pp.122.3.747

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133