[1] | Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40: 243–266. doi: 10.1146/annurev.biophys.093008.131331
|
[2] | Toyoshima C, Cornelius F (2013) New crystal structures of PII-type ATPases: excitement continues. Curr Opin Struct Biol 23: 507–514. doi: 10.1016/j.sbi.2013.06.005
|
[3] | Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89: 1341–1378. doi: 10.1152/physrev.00032.2008
|
[4] | Moller JV, Olesen C, Winther AM, Nissen P (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43: 501–566. doi: 10.1017/s003358351000017x
|
[5] | Yu X, Carroll S, Rigaud JL, Inesi G (1993) H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J 64: 1232–1242. doi: 10.1016/s0006-3495(93)81489-9
|
[6] | Zafar S, Hussain A, Liu Y, Lewis D, Inesi G (2008) Specificity of ligand binding to transport sites: Ca2+ binding to the Ca2+ transport ATPase and its dependence on H+ and Mg2+. Arch Biochem Biophys 476: 87–94. doi: 10.1016/j.abb.2008.04.035
|
[7] | Moutin MJ, Dupont Y (1991) Interaction of potassium and magnesium with the high affinity calcium-binding sites of the sarcoplasmic reticulum calcium-ATPase. J Biol Chem 266: 5580–5586.
|
[8] | Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, et al. (2005) Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+). Proc Natl Acad Sci U S A 102: 14489–14496. doi: 10.1073/pnas.0506222102
|
[9] | Inesi G, Lewis D, Toyoshima C, Hirata A, de Meis L (2008) Conformational fluctuations of the Ca2+-ATPase in the native membrane environment. Effects of pH, temperature, catalytic substrates, and thapsigargin. J Biol Chem 283: 1189–1196. doi: 10.1074/jbc.m707189200
|
[10] | Guillain F, Gingold MP, Champeil P (1982) Direct fluorescence measurements of Mg2+ binding to sarcoplasmic reticulum ATPase. J Biol Chem 257: 7366–7371.
|
[11] | Timonin IM, Dvoryantsev SN, Petrov VV, Ruuge EK, Levitsky DO (1991) Interaction of alkaline metal ions with Ca(2+)-binding sites of Ca(2+)-ATPase of sarcoplasmic reticulum: 23Na-NMR studies. Biochim Biophys Acta 1066: 43–53. doi: 10.1016/0005-2736(91)90248-7
|
[12] | Kekenes-Huskey PM, Metzger VT, Grant BJ, Andrew McCammon J (2012) Calcium binding and allosteric signaling mechanisms for the sarcoplasmic reticulum Ca(2)+ ATPase. Protein Sci 21: 1429–1443. doi: 10.1002/pro.2129
|
[13] | Espinoza-Fonseca LM, Thomas DD (2011) Atomic-level characterization of the activation mechanism of SERCA by calcium. PLoS One 6: e26936. doi: 10.1371/journal.pone.0026936
|
[14] | Nagarajan A, Andersen JP, Woolf TB (2012) Coarse-grained simulations of transitions in the E2-to-E1 conformations for Ca ATPase (SERCA) show entropy-enthalpy compensation. J Mol Biol 422: 575–593. doi: 10.1016/j.jmb.2012.06.001
|
[15] | Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, et al. (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495: 260–264. doi: 10.1038/nature11899
|
[16] | Winther AM, Bublitz M, Karlsen JL, Moller JV, Hansen JB, et al. (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495: 265–269. doi: 10.1038/nature11900
|
[17] | Gunzel D, Galler S (1991) Intracellular free Mg2+ concentration in skeletal muscle fibres of frog and crayfish. Pflugers Arch 417: 446–453. doi: 10.1007/bf00370938
|
[18] | Blatter LA (1990) Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: interactions between magnesium and sodium in the regulation of [Mg]i. Pflugers Arch 416: 238–246. doi: 10.1007/bf00392059
|
[19] | Liu Y, Pilankatta R, Lewis D, Inesi G, Tadini-Buoninsegni F, et al. (2009) High-yield heterologous expression of wild type and mutant Ca(2+) ATPase: Characterization of Ca(2+) binding sites by charge transfer. J Mol Biol 391: 858–871. doi: 10.1016/j.jmb.2009.06.044
|
[20] | Jones LR (1979) Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. Biochimica Et Biophysica Acta 557: 230–242. doi: 10.1016/0005-2736(79)90105-6
|
[21] | Bishop JE, Al-Shawi MK (1988) Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH. J Biol Chem 263: 1886–1892.
|
[22] | Lee AG, Baker K, Khan YM, East JM (1995) Effects of K+ on the binding of Ca2+ to the Ca(2+)-ATPase of sarcoplasmic reticulum. Biochem J 305 (Pt 1): 225–231.
|
[23] | Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73: 765–783. doi: 10.1002/prot.22102
|
[24] | Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61: 704–721. doi: 10.1002/prot.20660
|
[25] | Best RB, Zhu X, Shim J, Lopes PE, Mittal J, et al. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8: 3257–3273. doi: 10.1021/ct300400x
|
[26] | Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, et al. (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114: 7830–7843. doi: 10.1021/jp101759q
|
[27] | Allnér O, Nilsson L, Villa A (2012) Magnesium Ion–Water Coordination and Exchange in Biomolecular Simulations. J Chem Theory Comput 8: 1493–1502. doi: 10.1021/ct3000734
|
[28] | Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781–1802. doi: 10.1002/jcc.20289
|
[29] | Weber W, Hünenberger PH, McCammon JA (2000) Molecular Dynamics Simulations of a Polyalanine Octapeptide under Ewald Boundary Conditions: Influence of Artificial Periodicity on Peptide Conformation. J Phys Chem B 104: 3668–3675. doi: 10.1021/jp9937757
|
[30] | Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
|
[31] | Essmann U, Perera L, Berkowitz ML (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8593. doi: 10.1063/1.470117
|
[32] | Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr D Biol Crystallogr 62: 678–682. doi: 10.1107/s0907444906014594
|
[33] | Lee AG, East JM (2001) What the structure of a calcium pump tells us about its mechanism. Biochem J 356: 665–683. doi: 10.1042/0264-6021:3560665
|
[34] | Huang Y, Li H, Bu Y (2009) Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase. J Comput Chem 30: 2136–2145. doi: 10.1002/jcc.21219
|
[35] | Inesi G, Ma H, Lewis D, Xu C (2004) Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J Biol Chem 279: 31629–31637. doi: 10.1074/jbc.m403211200
|
[36] | Andersen JP, Vilsen B (1994) Amino acids Asn796 and Thr799 of the Ca(2+)-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites. J Biol Chem 269: 15931–15936.
|
[37] | Vilsen B, Andersen JP (1992) CrATP-induced Ca2+ occlusion in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 267: 25739–25743.
|
[38] | Andersen JP, Vilsen B (1992) Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 267: 19383–19387.
|
[39] | Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases. J Biol Chem 263: 8646–8657.
|
[40] | Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647–655. doi: 10.1038/35015017
|
[41] | Shannon RD (1976) Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A 32: 751–767. doi: 10.1107/s0567739476001551
|
[42] | Helm L, Merbach AE (2005) Inorganic and bioinorganic solvent exchange mechanisms. Chemical Reviews 105: 1923–1959. doi: 10.1021/cr030726o
|
[43] | Carugo O, Djinovic K, Rizzi M (1993) Comparison of the Coordinative Behavior of Calcium(Ii) and Magnesium(Ii) from Crystallographic Data. Journal of the Chemical Society-Dalton Transactions: 2127–2135.
|
[44] | Katz AK, Glusker JP, Beebe SA, Bock CW (1996) Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc. Journal of the American Chemical Society 118: 5752–5763. doi: 10.1021/ja953943i
|
[45] | Bock CW, Katz AK, Glusker JP (1995) Hydration of Zinc Ions - a Comparison with Magnesium and Beryllium Ions. Journal of the American Chemical Society 117: 3754–3763. doi: 10.1021/ja00118a012
|
[46] | Bock CW, Kaufman A, Glusker JP (1994) Coordination of Water to Magnesium Cations. Inorganic Chemistry 33: 419–427. doi: 10.1021/ic00081a007
|
[47] | Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996) Hydration energies of divalent beryllium and magnesium ions: An ab initio molecular orbital study. Journal of Physical Chemistry 100: 3488–3497. doi: 10.1021/jp952531t
|
[48] | Akin BL, Hurley TD, Chen Z, Jones LR (2013) The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J Biol Chem 288: 30181–30191. doi: 10.1074/jbc.m113.501585
|
[49] | Sugita Y, Ikeguchi M, Toyoshima C (2010) Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Proc Natl Acad Sci U S A 107: 21465–21469. doi: 10.1073/pnas.1015819107
|
[50] | Toyoshima C, Yonekura S, Tsueda J, Iwasawa S (2011) Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+. Proc Natl Acad Sci U S A 108: 1833–1838. doi: 10.1073/pnas.1017659108
|
[51] | Pallikkuth S, Blackwell DJ, Hu Z, Hou Z, Zieman DT, et al. (2013) Phosphorylated Phospholamban Stabilizes a Compact Conformation of the Cardiac Calcium-ATPase. Biophys J 105: 1812–1821. doi: 10.1016/j.bpj.2013.08.045
|
[52] | Winters DL, Autry JM, Svensson B, Thomas DD (2008) Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 47: 4246–4256. doi: 10.1021/bi702089j
|
[53] | Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430: 529–535. doi: 10.1038/nature02680
|
[54] | Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, et al. (2013) Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 342: 123–127. doi: 10.1126/science.1243352
|
[55] | Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature 502: 201–206. doi: 10.1038/nature12578
|
[56] | Poulsen H, Nissen P, Mouritsen OG, Khandelia H (2012) Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations. J Biol Chem 287: 15959–15965. doi: 10.1074/jbc.m112.340406
|
[57] | Yu H, Ratheal IM, Artigas P, Roux B (2011) Protonation of key acidic residues is critical for the K(+)-selectivity of the Na/K pump. Nat Struct Mol Biol 18: 1159–1163. doi: 10.1038/nsmb.2113
|
[58] | Clausen JD, Bublitz M, Arnou B, Montigny C, Jaxel C, et al. (2013) SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation. EMBO J 32: 3231–3243. doi: 10.1038/emboj.2013.250
|
[59] | McMullen DC, Kean WS, Verma A, Cole JT, Watson WD (2012) A microplate technique to simultaneously assay calcium accumulation in endoplasmic reticulum and SERCA release of inorganic phosphate. Biol Proced Online 14: 4. doi: 10.1186/1480-9222-14-4
|
[60] | Champeil P, Gingold MP, Guillain F, Inesi G (1983) Effect of magnesium on the calcium-dependent transient kinetics of sarcoplasmic reticulum ATPase, studied by stopped flow fluorescence and phosphorylation. J Biol Chem 258: 4453–4458.
|
[61] | Lenoir G, Jaxel C, Picard M, le Maire M, Champeil P, et al. (2006) Conformational changes in sarcoplasmic reticulum Ca(2+)-ATPase mutants: effect of mutations either at Ca(2+)-binding site II or at tryptophan 552 in the cytosolic domain. Biochemistry 45: 5261–5270. doi: 10.1021/bi0522091
|