全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Microsecond Molecular Dynamics Simulations of Mg2+- and K+- Bound E1 Intermediate States of the Calcium Pump

DOI: 10.1371/journal.pone.0095979

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have performed microsecond molecular dynamics (MD) simulations to characterize the structural dynamics of cation-bound E1 intermediate states of the calcium pump (sarcoendoplasmic reticulum Ca2+-ATPase, SERCA) in atomic detail, including a lipid bilayer with aqueous solution on both sides. X-ray crystallography with 40 mM Mg2+ in the absence of Ca2+ has shown that SERCA adopts an E1 structure with transmembrane Ca2+-binding sites I and II exposed to the cytosol, stabilized by a single Mg2+ bound to a hybrid binding site I′. This Mg2+-bound E1 intermediate state, designated E1?Mg2+, is proposed to constitute a functional SERCA intermediate that catalyzes the transition from E2 to E1?2Ca2+ by facilitating H+/Ca2+ exchange. To test this hypothesis, we performed two independent MD simulations based on the E1?Mg2+ crystal structure, starting in the presence or absence of initially-bound Mg2+. Both simulations were performed for 1 μs in a solution containing 100 mM K+ and 5 mM Mg2+ in the absence of Ca2+, mimicking muscle cytosol during relaxation. In the presence of initially-bound Mg2+, SERCA site I′ maintained Mg2+ binding during the entire MD trajectory, and the cytosolic headpiece maintained a semi-open structure. In the absence of initially-bound Mg2+, two K+ ions rapidly bound to sites I and I′ and stayed loosely bound during most of the simulation, while the cytosolic headpiece shifted gradually to a more open structure. Thus MD simulations predict that both E1?Mg2+ and E?2K+ intermediate states of SERCA are populated in solution in the absence of Ca2+, with the more open 2K+-bound state being more abundant at physiological ion concentrations. We propose that the E1?2K+ state acts as a functional intermediate that facilitates the E2 to E1?2Ca2+ transition through two mechanisms: by pre-organizing transport sites for Ca2+ binding, and by partially opening the cytosolic headpiece prior to Ca2+ activation of nucleotide binding.

References

[1]  Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40: 243–266. doi: 10.1146/annurev.biophys.093008.131331
[2]  Toyoshima C, Cornelius F (2013) New crystal structures of PII-type ATPases: excitement continues. Curr Opin Struct Biol 23: 507–514. doi: 10.1016/j.sbi.2013.06.005
[3]  Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89: 1341–1378. doi: 10.1152/physrev.00032.2008
[4]  Moller JV, Olesen C, Winther AM, Nissen P (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43: 501–566. doi: 10.1017/s003358351000017x
[5]  Yu X, Carroll S, Rigaud JL, Inesi G (1993) H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J 64: 1232–1242. doi: 10.1016/s0006-3495(93)81489-9
[6]  Zafar S, Hussain A, Liu Y, Lewis D, Inesi G (2008) Specificity of ligand binding to transport sites: Ca2+ binding to the Ca2+ transport ATPase and its dependence on H+ and Mg2+. Arch Biochem Biophys 476: 87–94. doi: 10.1016/j.abb.2008.04.035
[7]  Moutin MJ, Dupont Y (1991) Interaction of potassium and magnesium with the high affinity calcium-binding sites of the sarcoplasmic reticulum calcium-ATPase. J Biol Chem 266: 5580–5586.
[8]  Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, et al. (2005) Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+). Proc Natl Acad Sci U S A 102: 14489–14496. doi: 10.1073/pnas.0506222102
[9]  Inesi G, Lewis D, Toyoshima C, Hirata A, de Meis L (2008) Conformational fluctuations of the Ca2+-ATPase in the native membrane environment. Effects of pH, temperature, catalytic substrates, and thapsigargin. J Biol Chem 283: 1189–1196. doi: 10.1074/jbc.m707189200
[10]  Guillain F, Gingold MP, Champeil P (1982) Direct fluorescence measurements of Mg2+ binding to sarcoplasmic reticulum ATPase. J Biol Chem 257: 7366–7371.
[11]  Timonin IM, Dvoryantsev SN, Petrov VV, Ruuge EK, Levitsky DO (1991) Interaction of alkaline metal ions with Ca(2+)-binding sites of Ca(2+)-ATPase of sarcoplasmic reticulum: 23Na-NMR studies. Biochim Biophys Acta 1066: 43–53. doi: 10.1016/0005-2736(91)90248-7
[12]  Kekenes-Huskey PM, Metzger VT, Grant BJ, Andrew McCammon J (2012) Calcium binding and allosteric signaling mechanisms for the sarcoplasmic reticulum Ca(2)+ ATPase. Protein Sci 21: 1429–1443. doi: 10.1002/pro.2129
[13]  Espinoza-Fonseca LM, Thomas DD (2011) Atomic-level characterization of the activation mechanism of SERCA by calcium. PLoS One 6: e26936. doi: 10.1371/journal.pone.0026936
[14]  Nagarajan A, Andersen JP, Woolf TB (2012) Coarse-grained simulations of transitions in the E2-to-E1 conformations for Ca ATPase (SERCA) show entropy-enthalpy compensation. J Mol Biol 422: 575–593. doi: 10.1016/j.jmb.2012.06.001
[15]  Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, et al. (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495: 260–264. doi: 10.1038/nature11899
[16]  Winther AM, Bublitz M, Karlsen JL, Moller JV, Hansen JB, et al. (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495: 265–269. doi: 10.1038/nature11900
[17]  Gunzel D, Galler S (1991) Intracellular free Mg2+ concentration in skeletal muscle fibres of frog and crayfish. Pflugers Arch 417: 446–453. doi: 10.1007/bf00370938
[18]  Blatter LA (1990) Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: interactions between magnesium and sodium in the regulation of [Mg]i. Pflugers Arch 416: 238–246. doi: 10.1007/bf00392059
[19]  Liu Y, Pilankatta R, Lewis D, Inesi G, Tadini-Buoninsegni F, et al. (2009) High-yield heterologous expression of wild type and mutant Ca(2+) ATPase: Characterization of Ca(2+) binding sites by charge transfer. J Mol Biol 391: 858–871. doi: 10.1016/j.jmb.2009.06.044
[20]  Jones LR (1979) Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. Biochimica Et Biophysica Acta 557: 230–242. doi: 10.1016/0005-2736(79)90105-6
[21]  Bishop JE, Al-Shawi MK (1988) Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH. J Biol Chem 263: 1886–1892.
[22]  Lee AG, Baker K, Khan YM, East JM (1995) Effects of K+ on the binding of Ca2+ to the Ca(2+)-ATPase of sarcoplasmic reticulum. Biochem J 305 (Pt 1): 225–231.
[23]  Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73: 765–783. doi: 10.1002/prot.22102
[24]  Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61: 704–721. doi: 10.1002/prot.20660
[25]  Best RB, Zhu X, Shim J, Lopes PE, Mittal J, et al. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8: 3257–3273. doi: 10.1021/ct300400x
[26]  Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, et al. (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114: 7830–7843. doi: 10.1021/jp101759q
[27]  Allnér O, Nilsson L, Villa A (2012) Magnesium Ion–Water Coordination and Exchange in Biomolecular Simulations. J Chem Theory Comput 8: 1493–1502. doi: 10.1021/ct3000734
[28]  Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781–1802. doi: 10.1002/jcc.20289
[29]  Weber W, Hünenberger PH, McCammon JA (2000) Molecular Dynamics Simulations of a Polyalanine Octapeptide under Ewald Boundary Conditions: Influence of Artificial Periodicity on Peptide Conformation. J Phys Chem B 104: 3668–3675. doi: 10.1021/jp9937757
[30]  Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
[31]  Essmann U, Perera L, Berkowitz ML (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8593. doi: 10.1063/1.470117
[32]  Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr D Biol Crystallogr 62: 678–682. doi: 10.1107/s0907444906014594
[33]  Lee AG, East JM (2001) What the structure of a calcium pump tells us about its mechanism. Biochem J 356: 665–683. doi: 10.1042/0264-6021:3560665
[34]  Huang Y, Li H, Bu Y (2009) Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase. J Comput Chem 30: 2136–2145. doi: 10.1002/jcc.21219
[35]  Inesi G, Ma H, Lewis D, Xu C (2004) Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J Biol Chem 279: 31629–31637. doi: 10.1074/jbc.m403211200
[36]  Andersen JP, Vilsen B (1994) Amino acids Asn796 and Thr799 of the Ca(2+)-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites. J Biol Chem 269: 15931–15936.
[37]  Vilsen B, Andersen JP (1992) CrATP-induced Ca2+ occlusion in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 267: 25739–25743.
[38]  Andersen JP, Vilsen B (1992) Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 267: 19383–19387.
[39]  Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases. J Biol Chem 263: 8646–8657.
[40]  Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647–655. doi: 10.1038/35015017
[41]  Shannon RD (1976) Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A 32: 751–767. doi: 10.1107/s0567739476001551
[42]  Helm L, Merbach AE (2005) Inorganic and bioinorganic solvent exchange mechanisms. Chemical Reviews 105: 1923–1959. doi: 10.1021/cr030726o
[43]  Carugo O, Djinovic K, Rizzi M (1993) Comparison of the Coordinative Behavior of Calcium(Ii) and Magnesium(Ii) from Crystallographic Data. Journal of the Chemical Society-Dalton Transactions: 2127–2135.
[44]  Katz AK, Glusker JP, Beebe SA, Bock CW (1996) Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc. Journal of the American Chemical Society 118: 5752–5763. doi: 10.1021/ja953943i
[45]  Bock CW, Katz AK, Glusker JP (1995) Hydration of Zinc Ions - a Comparison with Magnesium and Beryllium Ions. Journal of the American Chemical Society 117: 3754–3763. doi: 10.1021/ja00118a012
[46]  Bock CW, Kaufman A, Glusker JP (1994) Coordination of Water to Magnesium Cations. Inorganic Chemistry 33: 419–427. doi: 10.1021/ic00081a007
[47]  Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996) Hydration energies of divalent beryllium and magnesium ions: An ab initio molecular orbital study. Journal of Physical Chemistry 100: 3488–3497. doi: 10.1021/jp952531t
[48]  Akin BL, Hurley TD, Chen Z, Jones LR (2013) The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J Biol Chem 288: 30181–30191. doi: 10.1074/jbc.m113.501585
[49]  Sugita Y, Ikeguchi M, Toyoshima C (2010) Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Proc Natl Acad Sci U S A 107: 21465–21469. doi: 10.1073/pnas.1015819107
[50]  Toyoshima C, Yonekura S, Tsueda J, Iwasawa S (2011) Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+. Proc Natl Acad Sci U S A 108: 1833–1838. doi: 10.1073/pnas.1017659108
[51]  Pallikkuth S, Blackwell DJ, Hu Z, Hou Z, Zieman DT, et al. (2013) Phosphorylated Phospholamban Stabilizes a Compact Conformation of the Cardiac Calcium-ATPase. Biophys J 105: 1812–1821. doi: 10.1016/j.bpj.2013.08.045
[52]  Winters DL, Autry JM, Svensson B, Thomas DD (2008) Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 47: 4246–4256. doi: 10.1021/bi702089j
[53]  Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430: 529–535. doi: 10.1038/nature02680
[54]  Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, et al. (2013) Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 342: 123–127. doi: 10.1126/science.1243352
[55]  Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature 502: 201–206. doi: 10.1038/nature12578
[56]  Poulsen H, Nissen P, Mouritsen OG, Khandelia H (2012) Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations. J Biol Chem 287: 15959–15965. doi: 10.1074/jbc.m112.340406
[57]  Yu H, Ratheal IM, Artigas P, Roux B (2011) Protonation of key acidic residues is critical for the K(+)-selectivity of the Na/K pump. Nat Struct Mol Biol 18: 1159–1163. doi: 10.1038/nsmb.2113
[58]  Clausen JD, Bublitz M, Arnou B, Montigny C, Jaxel C, et al. (2013) SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation. EMBO J 32: 3231–3243. doi: 10.1038/emboj.2013.250
[59]  McMullen DC, Kean WS, Verma A, Cole JT, Watson WD (2012) A microplate technique to simultaneously assay calcium accumulation in endoplasmic reticulum and SERCA release of inorganic phosphate. Biol Proced Online 14: 4. doi: 10.1186/1480-9222-14-4
[60]  Champeil P, Gingold MP, Guillain F, Inesi G (1983) Effect of magnesium on the calcium-dependent transient kinetics of sarcoplasmic reticulum ATPase, studied by stopped flow fluorescence and phosphorylation. J Biol Chem 258: 4453–4458.
[61]  Lenoir G, Jaxel C, Picard M, le Maire M, Champeil P, et al. (2006) Conformational changes in sarcoplasmic reticulum Ca(2+)-ATPase mutants: effect of mutations either at Ca(2+)-binding site II or at tryptophan 552 in the cytosolic domain. Biochemistry 45: 5261–5270. doi: 10.1021/bi0522091

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133