[1] | Nitsche M, Paulus W (2011) Transcranial direct current stimulation – update 2011. Restor Neurol Neurosci 29: 463–492.
|
[2] | Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, et al. (2008) Transcranial direct current stimulation: State of the art 2008. Brain Stimul 1: 206–223. doi: 10.1016/j.brs.2008.06.004
|
[3] | Fregni F, Pascual-Leone A (2007) Technology Insight: noninvasive brain stimulation in neurology - perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neuro 3: 383–393. doi: 10.1038/ncpneuro0530
|
[4] | Schutter DLG, Van Honk J, Panksepp J (2004) Introducing Transcranial Magnetic Stimulation (TMS) and its Property of Causal Inference in Investigating Brain-Function Relationships. Synthese 141: 155–173. doi: 10.1023/b:synt.0000042951.25087.16
|
[5] | Shafi MM, Westover MB, Fox MD, Pascual-Leone A (2012) Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur J Neurosci 35: 805–825. doi: 10.1111/j.1460-9568.2012.08035.x
|
[6] | Kuo M-F, Unger M, Liebetanz D, Lang N, Tergau F, et al. (2008) Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia 46: 2122–2128. doi: 10.1016/j.neuropsychologia.2008.02.023
|
[7] | Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol (Lond.) 527: 633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
|
[8] | Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57: 1899–1901. doi: 10.1212/wnl.57.10.1899
|
[9] | Stagg CJ, Nitsche MA (2011) Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 17: 37–53. doi: 10.1177/1073858410386614
|
[10] | Accornero N, Li Voti P, La Riccia M, Gregori B (2007) Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res 178: 261–266. doi: 10.1007/s00221-006-0733-y
|
[11] | Schlaug G, Renga V (2008) Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Rev Med Devices 5: 759–768. doi: 10.1586/17434440.5.6.759
|
[12] | Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125: 2238–2247. doi: 10.1093/brain/awf238
|
[13] | Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, et al. (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol (Lond.) 553: 293–301. doi: 10.1113/jphysiol.2003.049916
|
[14] | Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, et al. (2004) Consolidation of Human Motor Cortical Neuroplasticity by D-Cycloserine. Neuropsychopharmacology 29: 1573–1578. doi: 10.1038/sj.npp.1300517
|
[15] | Stagg CJ, Best JG, Stephenson MC, O'Shea J, Wylezinska M, et al. (2009) Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation. J Neurosci 29: 5202–5206. doi: 10.1523/jneurosci.4432-08.2009
|
[16] | Cattaneo Z, Pisoni A, Papagno C (2011) Transcranial direct current stimulation over Broca's region improves phonemic and semantic fluency in healthy individuals. Neuroscience 183: 64–70. doi: 10.1016/j.neuroscience.2011.03.058
|
[17] | Fl?el A, R?sser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive Brain Stimulation Improves Language Learning. J Cogn Neurosci 20: 1415–1422. doi: 10.1162/jocn.2008.20098
|
[18] | Fregni F, Boggio P, Nitsche M, Bermpohl F, Antal A, et al. (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166: 23–30. doi: 10.1007/s00221-005-2334-6
|
[19] | Kasahara K, Tanaka S, Hanakawa T, Senoo A, Honda M (2013) Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task. Neurosci Lett 545: 86–90. doi: 10.1016/j.neulet.2013.04.022
|
[20] | Cecere R, Bertini C, Làdavas E (2013) Differential Contribution of Cortical and Subcortical Visual Pathways to the Implicit Processing of Emotional Faces: A tDCS Study. J Neurosci 33: 6469–6475. doi: 10.1523/jneurosci.3431-12.2013
|
[21] | Maeoka H, Matsuo A, Hiyamizu M, Morioka S, Ando H (2012) Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: A study using electroencephalographic power spectrum analysis. Neurosci Lett 512: 12–16. doi: 10.1016/j.neulet.2012.01.037
|
[22] | Vanderhasselt M-A, De Raedt R, Brunoni AR, Campanh? C, Baeken C, et al. (2013) tDCS over the Left Prefrontal Cortex Enhances Cognitive Control for Positive Affective Stimuli. PLoS ONE 8: e62219. doi: 10.1371/journal.pone.0062219
|
[23] | Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, et al. (2010) Transcranial Direct Current Stimulation Improves Word Retrieval in Healthy and Nonfluent Aphasic Subjects. J Cogn Neurosci 23: 2309–2323. doi: 10.1162/jocn.2010.21579
|
[24] | Marangolo P, Marinelli CV, Bonifazi S, Fiori V, Ceravolo MG, et al. (2011) Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res 225: 498–504. doi: 10.1016/j.bbr.2011.08.008
|
[25] | Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, et al. (2010) Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry 81: 1105–1111. doi: 10.1136/jnnp.2009.202556
|
[26] | Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, et al. (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord 21: 1693–1702. doi: 10.1002/mds.21012
|
[27] | Brunoni AR, Valiengo L, Baccaro A, Zan?o TA, de Oliveira, Janaina F, et al. (2013) The sertraline vs electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry 70: 383–391. doi: 10.1001/2013.jamapsychiatry.32
|
[28] | Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, et al. (2006) Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8: 203–204. doi: 10.1111/j.1399-5618.2006.00291.x
|
[29] | Loo CK, Alonzo A, Martin D, Mitchell PB, Galvez V, et al. (2012) Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br J Psychiatry 200: 52–59. doi: 10.1192/bjp.bp.111.097634
|
[30] | Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, et al. (2012) Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry 169: 719–724. doi: 10.1176/appi.ajp.2012.11071091
|
[31] | Homan P, Kindler J, Federspiel A, Flury R, Hubl D, et al. (2011) Muting the voice: a case of arterial spin labeling-monitored transcranial direct current stimulation treatment of auditory verbal hallucinations. Am J Psychiatry 168: 853–854. doi: 10.1176/appi.ajp.2011.11030496
|
[32] | Amadi U, Ilie A, Johansen-Berg H, Stagg CJ (2014) Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. Neuroimage 88: 155–161. doi: 10.1016/j.neuroimage.2013.11.037
|
[33] | Antal A, Polania R, Schmidt-Samoa C, Dechent P, Paulus W (2011) Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage 55: 590–596. doi: 10.1016/j.neuroimage.2010.11.085
|
[34] | Antal A, Kovács G, Chaieb L, Cziraki C, Paulus W, et al. (2012) Cathodal stimulation of human MT+ leads to elevated fMRI signal: A tDCS-fMRI study. Restor Neurol Neurosci 30: 255–263.
|
[35] | Clemens B, Jung S, Zvyagintsev M, Domahs F, Willmes K (2013) Modulating arithmetic fact retrieval: A single-blind, sham-controlled tDCS study with repeated fMRI measurements. Neuropsychologia 51: 1279–1286. doi: 10.1016/j.neuropsychologia.2013.03.023
|
[36] | Holland R, Leff AP, Josephs O, Galea Joseph M, Desikan M, et al. (2011) Speech Facilitation by Left Inferior Frontal Cortex Stimulation. Curr Biol 21: 1403–1407. doi: 10.1016/j.cub.2011.07.021
|
[37] | Keeser D, Meindl T, Bor J, Palm U, Pogarell O, et al. (2011) Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI. J Neurosci 31: 15284–15293. doi: 10.1523/jneurosci.0542-11.2011
|
[38] | Lindenberg R, Nachtigall L, Meinzer M, Sieg MM, Fl?el A (2013) Differential Effects of Dual and Unihemispheric Motor Cortex Stimulation in Older Adults. J Neurosci 33: 9176–9183. doi: 10.1523/jneurosci.0055-13.2013
|
[39] | Meinzer M, Antonenko D, Lindenberg R, Hetzer S, Ulm L, et al. (2012) Electrical Brain Stimulation Improves Cognitive Performance by Modulating Functional Connectivity and Task-Specific Activation. J Neurosci 32: 1859–1866. doi: 10.1523/jneurosci.4812-11.2012
|
[40] | Park C-H, Chang WH, Park J-Y, Shin Y-I, Kim ST, et al. (2013) Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett 539: 7–10. doi: 10.1016/j.neulet.2013.01.047
|
[41] | Pe?a-Gómez C, Sala-Lonch R, Junqué C, Clemente IC, Vidal D, et al. (2012) Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul 5: 252–263. doi: 10.1016/j.brs.2011.08.006
|
[42] | Polanía R, Paulus W, Nitsche MA (2012) Reorganizing the Intrinsic Functional Architecture of the Human Primary Motor Cortex during Rest with Non-Invasive Cortical Stimulation. PLoS ONE 7: e30971. doi: 10.1371/journal.pone.0030971
|
[43] | Polanía R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33: 2499–2508. doi: 10.1002/hbm.21380
|
[44] | Sehm B, Sch?fer A, Kipping J, Margulies D, Conde V, et al. (2012) Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol 108: 3253–3263. doi: 10.1152/jn.00606.2012
|
[45] | Birn RM (2012) The role of physiological noise in resting-state functional connectivity. Neuroimage 62: 864–870. doi: 10.1016/j.neuroimage.2012.01.016
|
[46] | Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711. doi: 10.1038/nrn2201
|
[47] | Rosazza C, Minati L (2011) Resting-state brain networks: literature review and clinical applications. Neurol Sci 32: 773–785. doi: 10.1007/s10072-011-0636-y
|
[48] | Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond, B, Biol Sci 360: 1001–1013. doi: 10.1098/rstb.2005.1634
|
[49] | Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34: 537–541. doi: 10.1002/mrm.1910340409
|
[50] | Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, et al. (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107: 4734–4739.
|
[51] | Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, et al. (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848–13853. doi: 10.1073/pnas.0601417103
|
[52] | Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100: 253–258. doi: 10.1073/pnas.0135058100
|
[53] | Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. (2009) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040–13045. doi: 10.1073/pnas.0905267106
|
[54] | Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, et al. (2000) Mapping Functionally Related Regions of Brain with Functional Connectivity MR Imaging. AJNR Am J Neuroradiol 21: 1636–1644.
|
[55] | Koyama MS, Kelly C, Shehzad Z, Penesetti D, Castellanos FX, et al. (2010) Reading Networks at Rest. Cereb Cortex 20: 2549–2559. doi: 10.1093/cercor/bhq005
|
[56] | Kiviniemi V, Kantola J-H, Jauhiainen J, Tervonen O (2004) Comparison of methods for detecting nondeterministic BOLD fluctuation in fMRI. Magn Reson Imaging 22: 197–203. doi: 10.1016/j.mri.2003.09.007
|
[57] | Stevens WD, Buckner RL, Schacter DL (2010) Correlated Low-Frequency BOLD Fluctuations in the Resting Human Brain Are Modulated by Recent Experience in Category-Preferential Visual Regions. Cereb Cortex 20: 1997–2006. doi: 10.1093/cercor/bhp270
|
[58] | De Luca M, Smith S, De Stefano N, Federico A, Matthews P (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167: 587–594. doi: 10.1007/s00221-005-0059-1
|
[59] | Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103: 10046–10051. doi: 10.1073/pnas.0604187103
|
[60] | Filippi M, Valsasina P, Misci P, Falini A, Comi G, et al. (2013) The organization of intrinsic brain activity differs between genders: A resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp 34: 1330–1343. doi: 10.1002/hbm.21514
|
[61] | Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673–9678. doi: 10.1073/pnas.0504136102
|
[62] | Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, et al. (2007) Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J Neurosci 27: 2349–2356. doi: 10.1523/jneurosci.5587-06.2007
|
[63] | Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The Brain's Default Network. Ann NY Acad Sci 1124: 1–38.
|
[64] | Raichle ME, Snyder AZ (2007) A default mode of brain function: A brief history of an evolving idea. Neuroimage 37: 1083–1090. doi: 10.1016/j.neuroimage.2007.02.041
|
[65] | Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, et al. (1997) Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. J Cogn Neurosci 9: 648–663. doi: 10.1162/jocn.1997.9.5.648
|
[66] | Clemens B, Voβ B, Pawliczek C, Mingoia G, Weyer D, et al. (2014) Effect of MAOA Genotype on Resting-State Networks in Healthy Participants. Cereb Cortex doi:10.1093/cercor/bht366.
|
[67] | Jamadar S, Powers N, Meda S, Calhoun V, Gelernter J, et al. (2013) Genetic influences of resting state fMRI activity in language-related brain regions in healthy controls and schizophrenia patients: a pilot study. Brain Imaging Behav 7: 15–27. doi: 10.1007/s11682-012-9168-1
|
[68] | Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, et al. (2010) APOE4 Allele Disrupts Resting State fMRI Connectivity in the Absence of Amyloid Plaques or Decreased CSF Aβ42. J Neurosci 30: 17035–17040. doi: 10.1523/jneurosci.3987-10.2010
|
[69] | Nitsche MA, Doemkes S, Karak?se T, Antal A, Liebetanz D, et al. (2007) Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex. J Neurophysiol 97: 3109–3117. doi: 10.1152/jn.01312.2006
|
[70] | Fox MD, Halko MA, Eldaief MC, Pascual-Leone A (2012) Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62: 2232–2243. doi: 10.1016/j.neuroimage.2012.03.035
|
[71] | Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al. (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98: 676–682. doi: 10.1073/pnas.98.2.676
|
[72] | Uddin LQ, Kelly AM, Biswal BB, Xavier Castellanos F, Milham MP (2009) Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum Brain Mapp 30: 625–637. doi: 10.1002/hbm.20531
|
[73] | Binder JR, Desai RH, Graves WW, Conant LL (2009) Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb Cortex 19: 2767–2796. doi: 10.1093/cercor/bhp055
|
[74] | Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7: 217–218. doi: 10.1038/nn1203
|
[75] | Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14: 218–224.
|
[76] | Seghier ML (2013) The Angular Gyrus: Multiple Functions and Multiple Subdivisions. Neuroscientist 19: 43–61. doi: 10.1177/1073858412440596
|
[77] | Polanía R, Paulus W, Antal A, Nitsche MA (2011) Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study. Neuroimage 54: 2287–2296. doi: 10.1016/j.neuroimage.2010.09.085
|
[78] | Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[79] | Herwig U, Satrapi P, Sch?nfeldt-Lecuona C (2003) Using the International 10–20 EEG System for Positioning of Transcranial Magnetic Stimulation. Brain Topogr 16: 95–99. doi: 10.1023/b:brat.0000006333.93597.9d
|
[80] | Moliadze V, Antal A, Paulus W (2010) Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol 121: 2165–2171. doi: 10.1016/j.clinph.2010.04.033
|
[81] | Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, et al. (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64: 872–875. doi: 10.1212/01.wnl.0000152986.07469.e9
|
[82] | Wong DL, Baker CM (1988) Pain in children: comparison of assessment scales. Pediatr Nurs 14: 9–17.
|
[83] | Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23: 137–152. doi: 10.1109/tmi.2003.822821
|
[84] | McKeown MJ, Jung T-P, Makeig S, Brown G, Kindermann SS, et al. (1998) Spatially independent activity patterns in functional MRI data during the Stroop color-naming?task. Proc Natl Acad Sci U S A 95: 803–810. doi: 10.1073/pnas.95.3.803
|
[85] | Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25: 294–311. doi: 10.1016/j.neuroimage.2004.10.043
|
[86] | Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci U S A 101: 4637–4642. doi: 10.1073/pnas.0308627101
|
[87] | Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, et al. (2007) Resting-State Functional Connectivity in Major Depression: Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus. Biol Psychiatry 62: 429–437. doi: 10.1016/j.biopsych.2006.09.020
|
[88] | Mingoia G, Wagner G, Langbein K, Maitra R, Smesny S, et al. (2012) Default mode network activity in schizophrenia studied at resting state using probabilistic ICA. Schizophr Res 138: 143–149. doi: 10.1016/j.schres.2012.01.036
|
[89] | Mingoia G, Langbein K, Dietzek M, Wagner G, Smesny S, et al. (2013) Frequency domains of resting state default mode network activity in schizophrenia. Psychiatry Res 214: 80–82. doi: 10.1016/j.pscychresns.2013.05.013
|
[90] | Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, et al. (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52: 290–301. doi: 10.1016/j.neuroimage.2010.04.009
|
[91] | Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59: 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018
|
[92] | Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, et al. (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage 60: 623–632. doi: 10.1016/j.neuroimage.2011.12.063
|
[93] | Van Dijk KRA, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59: 431–438. doi: 10.1016/j.neuroimage.2011.07.044
|
[94] | Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12: 191–200. doi: 10.1155/2000/421719
|
[95] | Greicius MD, Kiviniemi V, Tervonen O, Vainionp?? V, Alahuhta S, et al. (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29: 839–847. doi: 10.1002/hbm.20537
|
[96] | Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, et al. (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22: 495–504. doi: 10.1111/j.1460-9568.2005.04233.x
|
[97] | Polanía R, Nitsche MA, Paulus W (2011) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32: 1236–1249. doi: 10.1002/hbm.21104
|
[98] | Zheng X, Alsop DC, Schlaug G (2011) Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage 58: 26–33. doi: 10.1016/j.neuroimage.2011.06.018
|
[99] | Horwitz B, Rumsey JM, Donohue BC (1998) Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci U S A 95: 8939–8944. doi: 10.1073/pnas.95.15.8939
|
[100] | Frey S, Campbell JSW, Pike GB, Petrides M (2008) Dissociating the Human Language Pathways with High Angular Resolution Diffusion Fiber Tractography. J Neurosci 28: 11435–11444. doi: 10.1523/jneurosci.2388-08.2008
|
[101] | Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, et al. (2009) Delineation of the Middle Longitudinal Fascicle in Humans: A Quantitative, In Vivo, DT-MRI Study. Cereb Cortex 19: 777–785. doi: 10.1093/cercor/bhn124
|
[102] | Gerardin E, Pochon J-B, Poline J-B, Tremblay L, Van de Moortele P-F, et al. (2004) Distinct striatal regions support movement selection, preparation and execution. Neuroreport 15: 2327–2331. doi: 10.1097/00001756-200410250-00005
|
[103] | Kemp JM, Powell TPS (1971) The Connexions of the Striatum and Globus Pallidus: Synthesis and Speculation. Philos Trans R Soc Lond., B, Biol Sci 262: 441–457. doi: 10.1098/rstb.1971.0106
|
[104] | Garavan H, Hester R, Murphy K, Fassbender C, Kelly C (2006) Individual differences in the functional neuroanatomy of inhibitory control. Brain Res 1105: 130–142. doi: 10.1016/j.brainres.2006.03.029
|
[105] | Monchi O, Petrides M, Strafella AP, Worsley KJ, Doyon J (2006) Functional role of the basal ganglia in the planning and execution of actions. Ann Neurol 59: 257–264. doi: 10.1002/ana.20742
|
[106] | Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I, et al. (2006) Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum Brain Mapp 27: 973–993. doi: 10.1002/hbm.20237
|
[107] | Di Martino A, Scheres A, Margulies DS, Kelly AMC, Uddin LQ, et al. (2008) Functional Connectivity of Human Striatum: A Resting State fMRI Study. Cereb Cortex 18: 2735–2747. doi: 10.1093/cercor/bhn041
|
[108] | Shulman GL, Astafiev SV, Franke D, Pope DLW, Snyder AZ, et al. (2009) Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J Neurosci 29: 4392–4407. doi: 10.1523/jneurosci.5609-08.2009
|
[109] | Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, et al. (2010) Dissociable Connectivity within Human Angular Gyrus and Intraparietal Sulcus: Evidence from Functional and Structural Connectivity. Cereb Cortex 20: 2636–2646. doi: 10.1093/cercor/bhq011
|
[110] | Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117: 1623–1629. doi: 10.1016/j.clinph.2006.04.009
|
[111] | Miranda PC, Faria P, Hallett M (2009) What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clin Neurophysiol 120: 1183–1187. doi: 10.1016/j.clinph.2009.03.023
|
[112] | Oostendorp TF, Hengeveld YA, Wolters CH, Stinstra J, Van Elswijk G, et al. (2008) Modeling transcranial DC stimulation. Conf Proc IEEE Eng Med Biol Soc 2008: 4226–4229. doi: 10.1109/iembs.2008.4650142
|
[113] | Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B (2010) Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage 51: 1310–1318. doi: 10.1016/j.neuroimage.2010.03.052
|
[114] | Suh HS, Lee WH, Cho YS, Kim J, Kim T (2010) Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy. Conf Proc IEEE Eng Med Biol Soc 2010: 2053–2056.
|
[115] | Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, et al. (2007) Transcranial direct current stimulation: A computer-based human model study. Neuroimage 35: 1113–1124. doi: 10.1016/j.neuroimage.2007.01.027
|
[116] | Merzagora AC, Foffani G, Panyavin I, Mordillo-Mateos L, Aguilar J, et al. (2010) Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage 49: 2304–2310. doi: 10.1016/j.neuroimage.2009.10.044
|
[117] | Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB (2011) Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul 4: 84–89. doi: 10.1016/j.brs.2010.06.004
|
[118] | Antal A, Terney D, Poreisz C, Paulus W (2007) Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci 26: 2687–2691. doi: 10.1111/j.1460-9568.2007.05896.x
|
[119] | Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB (2011) Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry doi:10.3389/fpsyt.2011.00045.
|
[120] | Stefan K, Wycislo M, Classen J (2004) Modulation of associative human motor cortical plasticity by attention. J. Neurophysiol 92: 66–72. doi: 10.1152/jn.00383.2003
|
[121] | Silvanto J, Muggleton N, Walsh V (2008) State-dependency in brain stimulation studies of perception and cognition. Trend Cogn Sci 12: 447–454. doi: 10.1016/j.tics.2008.09.004
|
[122] | Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, et al. (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1: 326–336. doi: 10.1016/j.brs.2008.07.002
|
[123] | Jacobson L, Koslowsky M, Lavidor M (2012) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216: 1–10. doi: 10.1007/s00221-011-2891-9
|
[124] | Clemens B, Zvyagintsev M, Sack A, Heinecke A, Willmes K, et al. (2011) Revealing the Functional Neuroanatomy of Intrinsic Alertness Using fMRI: Methodological Peculiarities. PLoS ONE 6: e25453. doi: 10.1371/journal.pone.0025453
|
[125] | Clemens B, Zvyagintsev M, Sack AT, Heinecke A, Willmes K, et al. (2013) Comparison of fMRI activation patterns for test and training procedures of alertness and focused attention. Restor Neurol Neurosci 31: 311–336.
|
[126] | Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215. doi: 10.1038/nrn755
|
[127] | Arrington CM, Carr TH, Mayer AR, Rao SM (2000) Neural Mechanisms of Visual Attention: Object-Based Selection of a Region in Space. J Cogn Neurosci 12: 106–117. doi: 10.1162/089892900563975
|
[128] | Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3: 277–283.
|
[129] | Sturm W, Longoni F, Fimm B, Dietrich T, Weis S, et al. (2004) Network for auditory intrinsic alertness: a PET study. Neuropsychologia 42: 563–568. doi: 10.1016/j.neuropsychologia.2003.11.004
|
[130] | Banich MT, Milham MP, Atchley RA, Cohen NJ, Webb A, et al. (2000) Prefrontal regions play a predominant role in imposing an attentional ‘set’: evidence from fMRI. Brain Res Cogn Brain Res 10: 1–9. doi: 10.1016/s0926-6410(00)00015-x
|
[131] | Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV (2001) A Parametric fMRI Study of Overt and Covert Shifts of Visuospatial Attention. Neuroimage 14: 310–321. doi: 10.1006/nimg.2001.0788
|
[132] | Corbetta M, Patel G, Shulman GL (2008) The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron 58: 306–324. doi: 10.1016/j.neuron.2008.04.017
|