全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Selection of Apoptotic Cell Specific Human Antibodies from Adult Bone Marrow

DOI: 10.1371/journal.pone.0095999

Full-Text   Cite this paper   Add to My Lib

Abstract:

Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC)-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.

References

[1]  Nossal GJ (1994) Negative selection of lymphocytes. Cell 76: 229–239. doi: 10.1016/0092-8674(94)90331-x
[2]  Dighiero G, Lymberi P, Holmberg D, Lundquist I, Coutinho A, et al. (1985) High frequency of natural autoantibodies in normal newborn mice. J Immunol 134: 765–771.
[3]  Hayakawa K, Asano M, Shinton SA, Gui M, Allman D, et al. (1999) Positive selection of natural autoreactive B cells. Science 285: 113–116. doi: 10.1126/science.285.5424.113
[4]  Avrameas S, Selmi C (2013) Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun 41: 46–49. doi: 10.1016/j.jaut.2013.01.006
[5]  Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10: 778–786. doi: 10.1038/nri2849
[6]  Gronwall C, Vas J, Silverman GJ (2012) Protective Roles of Natural IgM Antibodies. Front Immunol 3: 66. doi: 10.3389/fimmu.2012.00066
[7]  Elkon KB, Silverman GJ (2012) Naturally occurring autoantibodies to apoptotic cells. Adv Exp Med Biol 750: 14–26. doi: 10.1007/978-1-4614-3461-0_2
[8]  Friedman P, Horkko S, Steinberg D, Witztum JL, Dennis EA (2002) Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J Biol Chem 277: 7010–7020. doi: 10.1074/jbc.m108860200
[9]  Shaw PX, Goodyear CS, Chang MK, Witztum JL, Silverman GJ (2003) The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J Immunol 170: 6151–6157.
[10]  Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, et al. (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105: 1731–1740. doi: 10.1172/jci8472
[11]  Brown M, Schiffman G, Rittenberg MB (1984) Subpopulations of antibodies to phosphocholine in human serum. J Immunol 132: 1323–1328.
[12]  Gronwall C, Akhter E, Oh C, Burlingame RW, Petri M, et al. (2012) IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin Immunol 142: 390–398. doi: 10.1016/j.clim.2012.01.002
[13]  Silverman GJ, Srikrishnan R, Germar K, Goodyear CS, Andrews KA, et al. (2008) Genetic imprinting of autoantibody repertoires in systemic lupus erythematosus patients. Clin Exp Immunol 153: 102–116. doi: 10.1111/j.1365-2249.2008.03680.x
[14]  Padilla ND, Ciurana C, van Oers J, Ogilvie AC, Hack CE (2004) Levels of natural IgM antibodies against phosphorylcholine in healthy individuals and in patients undergoing isolated limb perfusion. J Immunol Methods 293: 1–11. doi: 10.1016/j.jim.2004.06.011
[15]  Silverman GJ, Vas J, Gronwall C (2013) Protective autoantibodies in the rheumatic diseases: lessons for therapy. Nat Rev Rheumatol 9: 291–300. doi: 10.1038/nrrheum.2013.30
[16]  Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317. doi: 10.1126/science.4001944
[17]  Lerner RA, Barbas CF 3rd, Kang AS, Burton DR (1991) On the use of combinatorial antibody libraries to clone the “fossil record” of an individual's immune response. Proc Natl Acad Sci U S A 88: 9705–9706. doi: 10.1073/pnas.88.21.9705
[18]  Kwong KY, Baskar S, Zhang H, Mackall CL, Rader C (2008) Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity. J Mol Biol 384: 1143–1156. doi: 10.1016/j.jmb.2008.09.008
[19]  Rader C (2012) Generation of human Fab libraries for phage display. Methods Mol Biol 901: 53–79. doi: 10.1007/978-1-61779-931-0_4
[20]  Barbas CF 3rd, Burton DR, Scott JK, Silverman GJ, editors (2001) Phage display: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
[21]  Kwong KY, Rader C (2009) E. coli expression and purification of Fab antibody fragments. Curr Protoc Protein Sci Chapter 6 : Unit 6 10.
[22]  Persson MA, Caothien RH, Burton DR (1991) Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci U S A 88: 2432–2436. doi: 10.1073/pnas.88.6.2432
[23]  Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41: W34–40. doi: 10.1093/nar/gkt382
[24]  Charles ED, Orloff MI, Dustin LB (2011) A flow cytometry-based strategy to identify and express IgM from VH1-69+ clonal peripheral B cells. J Immunol Methods 363: 210–220. doi: 10.1016/j.jim.2010.09.022
[25]  Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, et al. (2003) Predominant autoantibody production by early human B cell precursors. Science 301: 1374–1377. doi: 10.1126/science.1086907
[26]  Sasso EH, Silverman GJ, Mannik M (1989) Human IgM molecules that bind staphylococcal protein A contain VHIII H chains. J Immunol 142: 2778–2783.
[27]  Silverman GJ, Goodyear CS (2006) Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 6: 465–475. doi: 10.1038/nri1853
[28]  Whitelegg NR, Rees AR (2000) WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng 13: 819–824. doi: 10.1093/protein/13.12.819
[29]  Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32: W665–667. doi: 10.1093/nar/gkh381
[30]  Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: 10037–10041. doi: 10.1073/pnas.181342398
[31]  Sanz I (1991) Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J Immunol 147: 1720–1729.
[32]  Chang SP, Perlmutter RM, Brown M, Heusser CH, Hood L, et al. (1984) Immunologic memory to phosphocholine. IV. Hybridomas representative of Group I (T15-like) and Group II (non-T15-like) antibodies utilize distinct VH genes. J Immunol 132: 1550–1555.
[33]  Chang SP, Brown M, Rittenberg MB (1982) Immunologic memory to phosphorylcholine. II. PC-KLH induces two antibody populations that dominate different isotypes. J Immunol 128: 702–706.
[34]  Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125: S41–52. doi: 10.1016/j.jaci.2009.09.046
[35]  Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13: 37–45. doi: 10.1016/s1074-7613(00)00006-6
[36]  Arnaout R, Lee W, Cahill P, Honan T, Sparrow T, et al. (2011) High-resolution description of antibody heavy-chain repertoires in humans. PLoS One 6: e22365. doi: 10.1371/journal.pone.0022365
[37]  Casali P, Schettino EW (1996) Structure and function of natural antibodies. Curr Top Microbiol Immunol 210: 167–179. doi: 10.1007/978-3-642-85226-8_17
[38]  Sigal NH, Gearhart PJ, Klinman NR (1975) The frequency of phosphorylcholine-specific B cells in conventional and germfree BALB/C mice. J Immunol 114: 1354–1358.
[39]  Gearhart PJ, Sigal NH, Klinman NR (1977) The monoclonal anti-phosphorylcholine antibody response in several murine strains: genetic implications of a diverse repertoire. J Exp Med 145: 876–891. doi: 10.1084/jem.145.4.876
[40]  Choi YS, Dieter JA, Rothaeusler K, Luo Z, Baumgarth N (2012) B-1 cells in the bone marrow are a significant source of natural IgM. Eur J Immunol 42: 120–129. doi: 10.1002/eji.201141890
[41]  Herzenberg LA (1989) Toward a layered immune system. Cell 59: 953–954. doi: 10.1016/0092-8674(89)90748-4
[42]  Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11: 34–46. doi: 10.1038/nri2901
[43]  Kantor AB, Merrill CE, Herzenberg LA, Hillson JL (1997) An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells. J Immunol 158: 1175–1186.
[44]  Herzenberg LA, Baumgarth N, Wilshire JA (2000) B-1 cell origins and VH repertoire determination. Curr Top Microbiol Immunol 252: 3–13. doi: 10.1007/978-3-642-57284-5_1
[45]  Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, et al. (2009) Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol 183: 1346–1359. doi: 10.4049/jimmunol.0900948
[46]  Gronwall C, Chen Y, Vas J, Khanna S, Thiel S, et al. (2012) MAPK phosphatase-1 is required for regulatory natural autoantibody-mediated inhibition of TLR responses. Proc Natl Acad Sci U S A 109: 19745–19750. doi: 10.1073/pnas.1211868109
[47]  Vas J, Gronwall C, Marshak-Rothstein A, Silverman GJ (2012) Natural antibody to apoptotic cell membranes inhibits the proinflammatory properties of lupus autoantibody immune complexes. Arthritis Rheum 64: 3388–3398. doi: 10.1002/art.34537
[48]  Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, et al. (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9: 736–743. doi: 10.1038/nm876
[49]  de Faire U, Su J, Hua X, Frostegard A, Halldin M, et al. (2010) Low levels of IgM antibodies to phosphorylcholine predict cardiovascular disease in 60-year old men: effects on uptake of oxidized LDL in macrophages as a potential mechanism. J Autoimmun 34: 73–79. doi: 10.1016/j.jaut.2009.05.003
[50]  Gronlund H, Hallmans G, Jansson JH, Boman K, Wikstrom M, et al. (2009) Low levels of IgM antibodies against phosphorylcholine predict development of acute myocardial infarction in a population-based cohort from northern Sweden. Eur J Cardiovasc Prev Rehabil 16: 382–386. doi: 10.1097/hjr.0b013e32832a05df
[51]  Su J, Hua X, Concha H, Svenungsson E, Cederholm A, et al. (2008) Natural antibodies against phosphorylcholine as potential protective factors in SLE. Rheumatology (Oxford) 47: 1144–1150. doi: 10.1093/rheumatology/ken120
[52]  Asma GE, van den Bergh RL, Vossen JM (1986) Characterization of early lymphoid precursor cells in the human fetus using monoclonal antibodies and anti-terminal deoxynucleotidyl transferase. Clin Exp Immunol 64: 356–363.
[53]  Roben P, Barbas SM, Sandoval L, Lecerf JM, Stollar BD, et al. (1996) Repertoire cloning of lupus anti-DNA autoantibodies. J Clin Invest 98: 2827–2837. doi: 10.1172/jci119111
[54]  Reason DC, Wagner TC, Lucas AH (1997) Human Fab fragments specific for the Haemophilus influenzae b polysaccharide isolated from a bacteriophage combinatorial library use variable region gene combinations and express an idiotype that mirrors in vivo expression. Infect Immun 65: 261–266.
[55]  Griffin DO, Holodick NE, Rothstein TL (2011) Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 208: 67–80. doi: 10.1084/jem.20101499
[56]  Scott MG, Briles DE, Shackelford PG, Smith DS, Nahm MH (1987) Human antibodies to phosphocholine. IgG anti-PC antibodies express restricted numbers of V and C regions. J Immunol 138: 3325–3331.
[57]  Stein LD, Sigal NH (1984) Heterogeneity of the human phosphocholine-specific B cell repertoire. J Immunol 132: 1329–1335.
[58]  Smith K, Muther JJ, Duke AL, McKee E, Zheng NY, et al. (2013) Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax(R)23 are serotype specific and facilitate opsonophagocytosis. Immunobiology 218: 745–754. doi: 10.1016/j.imbio.2012.08.278
[59]  Meijer PJ, Nielsen LS, Lantto J, Jensen A (2009) Human antibody repertoires. Methods Mol Biol 525: : 261–277, xiv.
[60]  Peraldi-Roux S (2012) Human in-cell scFv library from infiltrating B cell. Methods Mol Biol 907: 73–83. doi: 10.1007/978-1-61779-974-7_4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133