bZIP proteins are one of the largest transcriptional regulators playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of recently published draft genome sequence of Cucumis sativus, no comprehensive investigation of these family members has been presented for cucumber. We have identified 64 bZIP transcription factor-encoding genes in the cucumber genome. Based on structural features of their encoded proteins, CsbZIP genes could be classified into 6 groups. Cucumber bZIP genes were expanded mainly by segmental duplication rather than tandem duplication. Although segmental duplication rate of the CsbZIP genes was lower than that of Arabidopsis, rice and sorghum, it was observed as a common expansion mechanism. Some orthologous relationships and chromosomal rearrangements were observed according to comparative mapping analysis with other species. Genome-wide expression analysis of bZIP genes indicated that 64 CsbZIP genes were differentially expressed in at least one of the ten sampled tissues. A total of 4 CsbZIP genes displayed higher expression values in leaf, flowers and root tissues. The in silico micro-RNA (miRNA) and target transcript analyses identified that a total of 21 CsbZIP genes were targeted by 38 plant miRNAs. CsbZIP20 and CsbZIP22 are the most targeted by miR165 and miR166 family members, respectively. We also analyzed the expression of ten CsbZIP genes in the root and leaf tissues of drought-stressed cucumber using quantitative RT-PCR. All of the selected CsbZIP genes were measured as increased in root tissue at 24th h upon PEG treatment. Contrarily, the down-regulation was observed in leaf tissues of all analyzed CsbZIP genes. CsbZIP12 and CsbZIP44 genes showed gradual induction of expression in root tissues during time points. This genome-wide identification and expression profiling provides new opportunities for cloning and functional analyses, which may be used in further studies for improving stress tolerance in plants.
References
[1]
Huang S, Li R, Zhang Z, Li L, Gu X, et al. (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet. 41: 1275–1281.
[2]
Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57: 203–232. doi: 10.1146/annurev.arplant.56.032604.144145
[3]
Qi J, Liu X, Shen D, Miao H, Xie B, et al. (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45: 1510–1515. doi: 10.1038/ng.2801
[4]
Muthamilarasan M, Theriappan P, Prasad M (2013) Recent advances in crop genomics for ensuring food security. Curr Sci 105: 155–158.
[5]
Yang X, Li Y, Zhang W, He H, Pan J, et al. (2014) Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica 196: 341–348. doi: 10.1007/s10681-013-1037-5
[6]
Innark P, Khanobdee C, Samipak S, Jantasuriyarat C (2013) Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Sci Hort 162: 278–284. doi: 10.1016/j.scienta.2013.08.029
[7]
Lv J, Qi J, Shi Q, Shen D, Zhang S, et al. (2012) Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.). PLoS ONE 7: e46919. doi: 10.1371/journal.pone.0046919
[8]
Zhang WW, Pan JS, He HL, Zhang C, Li Z, et al. (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124 (2): 249–259. doi: 10.1007/s00122-011-1701-x
[9]
Miao H, Zhang S, Wang X, Zhang Z, Li M, et al. (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182 (2): 167–176. doi: 10.1007/s10681-011-0410-5
[10]
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, et al. (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3): 106–111. doi: 10.1016/s1360-1385(01)02223-3
[11]
Jin Z, Xu W, Liu A (2014) Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.) Planta. 239: 299–312. doi: 10.1007/s00425-013-1979-9
[12]
Wei K, Chen J, Wang Y, Chen Y, Chen S, et al. (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19: 463–476. doi: 10.1093/dnares/dss026
[13]
Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146: 333–350. doi: 10.1104/pp.107.112821
[14]
Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, et al. (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53(3): 212–231. doi: 10.1111/j.1744-7909.2010.01017.x
[15]
Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, et al. (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3: e2944. doi: 10.1371/journal.pone.0002944
[16]
Wingender E, Chen X, Fricke E, Geffers R, Hehl R, et al. (2001) The TRANSFAC system on gene expression regulation. Nucleic Acids Res 29: 281–283. doi: 10.1093/nar/29.1.281
Yilmaz A, Nishiyama MY Jr, Fuentes BG, Souza GM, Janies D, et al. (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149: 171–180. doi: 10.1104/pp.108.128579
[19]
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, et al. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among Eukaryotes. Science 290: 2105–2110. doi: 10.1126/science.290.5499.2105
[20]
Iida K, Seki M, Sakurai T, Satou M, Akiyama K, et al. (2005) RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Res 12: 247–256. doi: 10.1093/dnares/dsi011
[21]
Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66: 675–683. doi: 10.1007/s11103-008-9298-4
[22]
Walsh J, Waters CA, Freeling M (1998) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf bladesheath boundary. Genes Dev 12: 208–218. doi: 10.1101/gad.12.2.208
[23]
Chuang CF, Running MP, Williams RW, Meyerowitz EM (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 13: 334–344. doi: 10.1101/gad.13.3.334
[24]
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, et al. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052–1056. doi: 10.1126/science.1115983
[25]
Silveira AB, Gauer L, Tomaz JP, Cardoso PR, Carmello-Guerreiro S, et al. (2007) The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development. Plant Sci 172: 1148–1156. doi: 10.1016/j.plantsci.2007.03.003
[26]
Shen H, Cao K, Wang X (2007) A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem Biophys Res Commun 362: 425–430. doi: 10.1016/j.bbrc.2007.08.026
[27]
Yin Y, Zhu Q, Dai S, Lamb C, Beachy RN (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. Embo J 16: 5247–5259. doi: 10.1093/emboj/16.17.5247
[28]
Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, et al. (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12: 901–915. doi: 10.2307/3871218
[29]
Ciceri P, Locatelli F, Genga A, Viotti A, Schmidt RJ (1999) The activity of the maize Opaque2 transcriptional activator is regulated diurnally. Plant Physiol 121: 1321–1328. doi: 10.1104/pp.121.4.1321
[30]
Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, et al. (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. Embo J 25: 3133–3143. doi: 10.1038/sj.emboj.7601206
[31]
Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938–943. doi: 10.1038/nature06069
[32]
Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102: 5280–5285. doi: 10.1073/pnas.0408941102
[33]
Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51: 897–909. doi: 10.1111/j.1365-313x.2007.03195.x
[34]
Lara P, Onate-Sanchez L, Abraham Z, Ferrandiz C, D?az I, et al. (2003) Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J Biol Chem 278: 21003–21011. doi: 10.1074/jbc.m210538200
[35]
Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60: 207–217. doi: 10.1111/j.1365-313x.2009.03948.x
[36]
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, et al. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97: 11632–11637. doi: 10.1073/pnas.190309197
[37]
Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40: 75–87. doi: 10.1111/j.1365-313x.2004.02192.x
[38]
Liu JX, Srivastava R, Howell SH (2008) Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ 31: 1735–1743. doi: 10.1111/j.1365-3040.2008.01873.x
[39]
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K, et al. (2009) Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69: 107–119. doi: 10.1007/s11103-008-9410-9
[40]
Yang O, Popova OV, Suthoff U, Luking I, Dietz KJ, et al. (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436: 45–55. doi: 10.1016/j.gene.2009.02.010
[41]
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, et al. (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61: 672–685. doi: 10.1111/j.1365-313x.2009.04092.x
[42]
Aguan K, Sugawara K, Suzuki N, Kusano T (1993) Low-temperature dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol Gen Genet 240: 1–8. doi: 10.1007/bf00276876
[43]
Gupta S, Chattopadhyay MK, Chatterjee P, Ghosh B, SenGupta DN (1998) Expression of abscisic acid-responsive element-binding protein in salt-tolerant indica rice (Oryza sativa L. cv. Pokkali). Plant Mol Biol 37: 629–637.
[44]
Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, et al. (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46: 1623–1634. doi: 10.1093/pcp/pci178
[45]
Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6: 18.
[46]
Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148: 1938–1952. doi: 10.1104/pp.108.128199
[47]
Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229: 605–615. doi: 10.1007/s00425-008-0857-3
[48]
Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, et al. (2010a) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167: 1512–1520. doi: 10.1016/j.jplph.2010.05.008
[49]
Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, et al. (2010b) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72: 557–566. doi: 10.1007/s11103-009-9592-9
[50]
Yun KY, Park MR, Mohanty B, Herath V, Xu F, et al. (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10: 16. doi: 10.1186/1471-2229-10-16
[51]
Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134: 74–86. doi: 10.1111/j.1399-3054.2008.01107.x
[52]
Yanez M, Caceres S, Orellana S, Bast?as A, Verdugo I, et al. (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28: 1497–1507. doi: 10.1007/s00299-009-0749-4
[53]
Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, et al (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231: 1459–1473. doi: 10.1007/s00425-010-1147-4
[54]
Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, et al. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25: 247–259. doi: 10.1046/j.1365-313x.2001.00947.x
[55]
Liao Y, Zhang JS, Chen SY, Zhang WK (2008a) Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol 50: 221–230. doi: 10.1111/j.1744-7909.2007.00593.x
[56]
Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, et al. (2008b) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228: 225–240. doi: 10.1007/s00425-008-0731-3
[57]
Lee SC, Choi HW, Hwang IS, Choi du S, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224: 1209–1225. doi: 10.1007/s00425-006-0302-4
[58]
Rodriguez-Uribe L, O’Connell MA (2006) A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). J Exp Bot 57: 1391–1398. doi: 10.1093/jxb/erj118
[59]
Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acidmediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37: 326–339. doi: 10.1046/j.1365-313x.2003.01963.x
[60]
Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K (1995) A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet 248: 507–517. doi: 10.1007/bf02423445
[61]
Zhang H, Jin JP, Tang L, Zhao Y, Gu XC, et al. (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39: D1114–D1117. doi: 10.1093/nar/gkq1141
[62]
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: D1178–D1186. doi: 10.1093/nar/gkr944
[63]
Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res doi:10.1093/nar/gkr931.
[64]
Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77–78. doi: 10.1093/jhered/93.1.77
[65]
Tang H, Bowers JE, Wang X, Ming R, Alam M, et al. (2008) Synteny and collinearity in plant genomes. Science 320: 486–488. doi: 10.1126/science.1153917
[66]
Du D, Zhang Q, Cheng T, Pan H, Yang W, et al. (2013) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40(2): 1937–46. doi: 10.1007/s11033-012-2250-3
[67]
Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132: 530–543. doi: 10.1104/pp.103.021964
[68]
Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29: 1023–1026. doi: 10.1360/yc-007-1023
[69]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[70]
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. doi: 10.1093/nar/25.24.4876
[71]
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[72]
Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: W475–8. doi: 10.1093/nar/gkr201
[73]
Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park, California, 28–36.
[74]
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–W120. doi: 10.1093/nar/gki442
[75]
Conesa A, G?tz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008: 619832. doi: 10.1155/2008/619832
[76]
Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34: W609–W612. doi: 10.1093/nar/gkl315
[77]
Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155. doi: 10.1126/science.290.5494.1151
[78]
Yang Z, Gu S, Wang X, Li W, Tang Z, et al. (2008) Molecular evolution of the cpp-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 67: 266–277. doi: 10.1007/s00239-008-9143-z
[79]
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The protein data bank. Nucleic Acids Res 28: 235–242. doi: 10.1093/nar/28.1.235
[80]
Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371. doi: 10.1038/nprot.2009.2
[81]
Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33 (Web Server issue): W701–4.
[82]
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347: 1–32.
[83]
Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17: 1360–1385. doi: 10.1016/j.tplants.2012.02.004
[84]
Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4: 10.
[85]
Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, et al. (2007) F-Box Proteins in Rice. genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143: 14671483. doi: 10.1104/pp.106.091900
[86]
Tang X, Bian S, Tang M, Lu Q, Li S, et al. (2012) MicroRNA–mediated repression of the seed maturation program during vegetative development in Arabidopsis. PLoS Genet. 8: e1003091. doi: 10.1371/journal.pgen.1003091
[87]
Eldem V, Okay S, Unver T (2013) Plant microRNAs: new players in functional genomics. Turk J Agr?c For 37: 1–21.
[88]
S?ding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21: 951–960. doi: 10.1093/bioinformatics/bti125
[89]
Jefferys BR, Kelley LA, Sternberg MJE (2010) Protein folding requires crowd control in a simulated cell. J Mol Biol 397: 1329–1338. doi: 10.1016/j.jmb.2010.01.074
[90]
Jakoby M, Weisshaar MJB, Dr?ge-Laser W, Vicente-Carbajosa J, Tiedemann J, et al. (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106–111. doi: 10.1016/s1360-1385(01)02223-3
[91]
Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10: 230. doi: 10.1186/1471-2229-10-230
[92]
Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, et al. (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought inducible genes in Arabidopsis. Plant Cell Physiol 52: 2136–2146. doi: 10.1093/pcp/pcr143
[93]
Rodriguez-Uribe L, O’Connell MA (2006) A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). Journal of Experimental Botany 57 (6): 1391–1398. doi: 10.1093/jxb/erj118
[94]
Neill SJ, Burnett EC (1999) Regulation of gene expression during water deficit stress. Plant Growth Regulation 29: 23–33. doi: 10.1023/a:1006251631570
[95]
Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 1209–1225. doi: 10.1007/s00425-006-0302-4