全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Resolving Hot Spots in the C-Terminal Dimerization Domain that Determine the Stability of the Molecular Chaperone Hsp90

DOI: 10.1371/journal.pone.0096031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human heat shock protein of 90 kDa (hHsp90) is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD) should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScorePPI. Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization.

References

[1]  Zinzalla G, Thurston DE (2009) Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Future Med Chem 1: 65–93. doi: 10.4155/fmc.09.12
[2]  Fischer PM (2005) Protein-protein Interactions in Drug Discovery. Drug Des Rev—Online 2: 179–207. doi: 10.2174/1567269053828837
[3]  Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001–1009. doi: 10.1038/nature06526
[4]  Blazer LL, Neubig RR (2009) Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34: 126–141. doi: 10.1038/npp.2008.151
[5]  Ryan DP, Matthews JM (2005) Protein-protein interactions in human disease. Curr Opin Struct Biol 15: 441–446. doi: 10.1016/j.sbi.2005.06.001
[6]  Gerrard JA, Hutton CA, Perugini MA (2007) Inhibiting protein-protein interactions as an emerging paradigm for drug discovery. Mini Rev Med Chem 7: 151–157. doi: 10.2174/138955707779802561
[7]  Chene P (2006) Drugs targeting protein-protein interactions. ChemMedChem 1: 400–411. doi: 10.1002/cmdc.200600004
[8]  Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386. doi: 10.1126/science.7529940
[9]  Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280: 1–9. doi: 10.1006/jmbi.1998.1843
[10]  Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330: 891–913. doi: 10.1016/s0022-2836(03)00610-7
[11]  Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus KH, et al. (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52: 120–133. doi: 10.1021/ci200322s
[12]  Metz A, Schanda J, Grez M, Wichmann C, Gohlke H (2013) From determinants of RUNX1/ETO tetramerization to small-molecule protein-protein interaction inhibitors targeting acute myeloid leukemia. J Chem Inf Model 53: 2197–2202. doi: 10.1021/ci400332e
[13]  Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D (2012) Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. J Chem Inf Model 52: 2236–2244. doi: 10.1021/ci300175u
[14]  Mayer MP, Prodromou C, Frydman J (2009) The Hsp90 mosaic: a picture emerges. Nat Struct Mol Biol 16: 2–6. doi: 10.1038/nsmb0109-2
[15]  Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358: 169–170. doi: 10.1038/358169a0
[16]  Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5: 781–791. doi: 10.1038/nrm1492
[17]  Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75: 271–294. doi: 10.1146/annurev.biochem.75.103004.142738
[18]  Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283: 18473–18477. doi: 10.1074/jbc.r800007200
[19]  Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94: 12949–12956. doi: 10.1073/pnas.94.24.12949
[20]  Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3: 1021–1030.
[21]  Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761–772. doi: 10.1038/nrc1716
[22]  Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154: 267–273. doi: 10.1083/jcb.200104079
[23]  Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10: 46–51. doi: 10.1016/s0959-440x(99)00047-0
[24]  Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91: 8324–8328. doi: 10.1073/pnas.91.18.8324
[25]  Sharma SV, Agatsuma T, Nakano H (1998) Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 16: 2639–2645. doi: 10.1038/sj.onc.1201790
[26]  Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, et al. (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100: 1523–1529.
[27]  Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, et al. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75. doi: 10.1016/s0092-8674(00)80314-1
[28]  Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143: 901–910. doi: 10.1083/jcb.143.4.901
[29]  Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, et al. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17: 4829–4836. doi: 10.1093/emboj/17.16.4829
[30]  Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581: 3758–3769. doi: 10.1016/j.febslet.2007.05.040
[31]  Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95: 323–348. doi: 10.1016/s0065-230x(06)95009-x
[32]  Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I (1994) The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 14: 1459–1464.
[33]  Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12: 1087–1097. doi: 10.1016/j.str.2004.03.020
[34]  Ratzke C, Mickler M, Hellenkamp B, Buchner J, Hugel T (2010) Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci U S A 107: 16101–16106. doi: 10.1073/pnas.1000916107
[35]  Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275: 37181–37186. doi: 10.1074/jbc.m003701200
[36]  Yun BG, Huang W, Leach N, Hartson SD, Matts RL (2004) Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry 43: 8217–8229. doi: 10.1021/bi0497998
[37]  Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des 18: 113–135.
[38]  Krüger DM, Gohlke H (2010) DrugScore(PPI) webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res 38: W480–W486. doi: 10.1093/nar/gkq471
[39]  Krüger DM, Gohlke H (2011) Protein-protein interactions, web-based analysis. Nachr Chem 59: 44–45. doi: 10.1002/nadc.201177770
[40]  Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, et al. (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screening 6: 429–440. doi: 10.1089/108705701753364922
[41]  Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. doi: 10.1006/jmbi.1993.1626
[42]  Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26: 283–291. doi: 10.1107/s0021889892009944
[43]  Lee CC, Lin TW, Ko TP, Wang AH (2011) The hexameric structures of human heat shock protein 90. PLoS One 6: e19961. doi: 10.1371/journal.pone.0019961
[44]  Sgobba M, Degliesposti G, Ferrari AM, Rastelli G (2008) Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs. Chem Biol Drug Des 71: 420–433. doi: 10.1111/j.1747-0285.2008.00650.x
[45]  Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, et al. (2010) Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood 116: 603–613. doi: 10.1182/blood-2009-10-248047
[46]  Thorn KS, Bogan AA (2001) ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17: 284–285. doi: 10.1093/bioinformatics/17.3.284
[47]  Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2: 2212–2221. doi: 10.1038/nprot.2007.321
[48]  Matulis D, Kranz JK, Salemme FR, Todd MJ (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44: 5258–5266. doi: 10.1021/bi048135v
[49]  Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, et al. (1997) Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci U S A 94: 14338–14342. doi: 10.1073/pnas.94.26.14338
[50]  Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11: 32–51. doi: 10.1007/s12575-009-9008-x
[51]  Archontis G, Simonson T, Karplus M (2001) Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. J Mol Biol 306: 307–327. doi: 10.1006/jmbi.2000.4285
[52]  Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein-protein interface determinant amino-acid residues. Proteins 68: 803–812. doi: 10.1002/prot.21396
[53]  Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, et al. (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10: 1147–1153. doi: 10.1038/embor.2009.153
[54]  Nemoto T, Sato N (1998) Oligomeric forms of the 90-kDa heat shock protein. Biochemical Journal 330 (Pt 2): 989–995.
[55]  Moullintraffort L, Bruneaux M, Nazabal A, Allegro D, Giudice E, et al. (2010) Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers. J Biol Chem 285: 15100–15110. doi: 10.1074/jbc.m109.094698
[56]  Lavinder JJ, Hari SB, Sullivan BJ, Magliery TJ (2009) High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. J Am Chem Soc 131: 3794–3795. doi: 10.1021/ja8049063
[57]  Mulepati S, Bailey S (2011) Structural and Biochemical Analysis of Nuclease Domain of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Protein 3 (Cas3). Journal of Biological Chemistry 286: 31896–31903. doi: 10.1074/jbc.m111.270017
[58]  Froese DS, Healy S, McDonald M, Kochan G, Oppermann U, et al. (2010) Thermolability of mutant MMACHC protein in the vitamin B12-responsive cblC disorder. Mol Genet Metab 100: 29–36. doi: 10.1016/j.ymgme.2010.02.005
[59]  Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Surg 29: 748–751. doi: 10.1016/s0741-5214(99)70329-0
[60]  Kervinen J, Ma H, Bayoumy S, Schubert C, Milligan C, et al. (2006) Effect of construct design on MAPKAP kinase-2 activity, thermodynamic stability and ligand-binding affinity. Arch Biochem Biophys 449: 47–56. doi: 10.1016/j.abb.2006.03.018
[61]  Bjork A, Mantzilas D, Sirevag R, Eijsink VG (2003) Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase. FEBS Lett 553: 423–426. doi: 10.1016/s0014-5793(03)01076-7
[62]  Baden EM, Owen BA, Peterson FC, Volkman BF, Ramirez-Alvarado M, et al. (2008) Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem 283: 15853–15860. doi: 10.1074/jbc.m705347200
[63]  Mandelman D, Schwarz FP, Li H, Poulos TL (1998) The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Sci 7: 2089–2098. doi: 10.1002/pro.5560071005
[64]  Mateu MG, Fersht AR (1998) Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J 17: 2748–2758. doi: 10.1093/emboj/17.10.2748
[65]  Cimmperman P, Baranauskiene L, Jachimoviciute S, Jachno J, Torresan J, et al. (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95: 3222–3231. doi: 10.1529/biophysj.108.134973
[66]  Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc-Devin J, et al. (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 277: 12208–12214. doi: 10.1074/jbc.m111874200
[67]  Thanos CD, DeLano WL, Wells JA (2006) Hot-spot mimicry of a cytokine receptor by a small molecule. Proc Natl Acad Sci U S A 103: 15422–15427. doi: 10.1073/pnas.0607058103
[68]  Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5: 161–173. doi: 10.1038/nchem.1568
[69]  Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, et al. (2013) Comprehensive experimental and computational analysis of binding energy hot spots at the NF-kappaB essential modulator/IKKbeta protein-protein interface. J Am Chem Soc 135: 6242–6256. doi: 10.1021/ja400914z
[70]  Morelli X, Bourgeas R, Roche P (2011) Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 15: 475–481. doi: 10.1016/j.cbpa.2011.05.024
[71]  Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41: 2644–2676. doi: 10.1002/1521-3773(20020802)41:15<2644::aid-anie2644>3.0.co;2-o
[72]  Metz A, Ciglia E, Gohlke H (2012) Modulating protein-protein interactions: from structural determinants of binding to druggability prediction to application. Curr Pharm Des 18: 4630–4647. doi: 10.2174/138161212802651553
[73]  Spanier L, Ciglia E, Hansen FK, Kuna K, Frank W, et al.. (2014) Design, synthesis, and conformational analysis of trispyrimidonamides as α-helix mimetics. J Org Chem DOI: 10.1021/jo402353z.
[74]  Cummings CG, Hamilton AD (2010) Disrupting protein-protein interactions with non-peptidic, small molecule alpha-helix mimetics. Curr Opin Chem Biol 14: 341–346. doi: 10.1016/j.cbpa.2010.04.001
[75]  Davis JM, Tsou LK, Hamilton AD (2007) Synthetic non-peptide mimetics of alpha-helices. Chem Soc Rev 36: 326–334. doi: 10.1039/b608043j
[76]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
[77]  Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, et al. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38: W695–699. doi: 10.1093/nar/gkq313
[78]  Case DA, Darden TA, Cheatham TEI, Simmerling CL, Wang J, et al.. (2010) AMBER 11. University of California, San Francisco.
[79]  Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
[80]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 79: 926–935. doi: 10.1063/1.445869
[81]  Darden T, York D, Pedersen L (1993) Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
[82]  Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 23: 327–341. doi: 10.1016/0021-9991(77)90098-5
[83]  Homeyer N, Gohlke H (2012) Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method. Mol Inf 31: 114–122. doi: 10.1002/minf.201100135
[84]  Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55: 383–394. doi: 10.1002/prot.20033
[85]  Richter K, Soroka J, Skalniak L, Leskovar A, Hessling M, et al. (2008) Conserved conformational changes in the ATPase cycle of human Hsp90. J Biol Chem 283: 17757–17765. doi: 10.1074/jbc.m800540200
[86]  Jancarik J, Pufan R, Hong C, Kim SH, Kim R (2004) Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins. Acta Crystallogr Sect D Biol Crystallogr 60: 1670–1673. doi: 10.1107/s0907444904010972

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133