[1] | Zinzalla G, Thurston DE (2009) Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Future Med Chem 1: 65–93. doi: 10.4155/fmc.09.12
|
[2] | Fischer PM (2005) Protein-protein Interactions in Drug Discovery. Drug Des Rev—Online 2: 179–207. doi: 10.2174/1567269053828837
|
[3] | Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001–1009. doi: 10.1038/nature06526
|
[4] | Blazer LL, Neubig RR (2009) Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34: 126–141. doi: 10.1038/npp.2008.151
|
[5] | Ryan DP, Matthews JM (2005) Protein-protein interactions in human disease. Curr Opin Struct Biol 15: 441–446. doi: 10.1016/j.sbi.2005.06.001
|
[6] | Gerrard JA, Hutton CA, Perugini MA (2007) Inhibiting protein-protein interactions as an emerging paradigm for drug discovery. Mini Rev Med Chem 7: 151–157. doi: 10.2174/138955707779802561
|
[7] | Chene P (2006) Drugs targeting protein-protein interactions. ChemMedChem 1: 400–411. doi: 10.1002/cmdc.200600004
|
[8] | Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386. doi: 10.1126/science.7529940
|
[9] | Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280: 1–9. doi: 10.1006/jmbi.1998.1843
|
[10] | Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330: 891–913. doi: 10.1016/s0022-2836(03)00610-7
|
[11] | Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus KH, et al. (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52: 120–133. doi: 10.1021/ci200322s
|
[12] | Metz A, Schanda J, Grez M, Wichmann C, Gohlke H (2013) From determinants of RUNX1/ETO tetramerization to small-molecule protein-protein interaction inhibitors targeting acute myeloid leukemia. J Chem Inf Model 53: 2197–2202. doi: 10.1021/ci400332e
|
[13] | Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D (2012) Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. J Chem Inf Model 52: 2236–2244. doi: 10.1021/ci300175u
|
[14] | Mayer MP, Prodromou C, Frydman J (2009) The Hsp90 mosaic: a picture emerges. Nat Struct Mol Biol 16: 2–6. doi: 10.1038/nsmb0109-2
|
[15] | Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358: 169–170. doi: 10.1038/358169a0
|
[16] | Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5: 781–791. doi: 10.1038/nrm1492
|
[17] | Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75: 271–294. doi: 10.1146/annurev.biochem.75.103004.142738
|
[18] | Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283: 18473–18477. doi: 10.1074/jbc.r800007200
|
[19] | Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94: 12949–12956. doi: 10.1073/pnas.94.24.12949
|
[20] | Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3: 1021–1030.
|
[21] | Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761–772. doi: 10.1038/nrc1716
|
[22] | Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154: 267–273. doi: 10.1083/jcb.200104079
|
[23] | Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10: 46–51. doi: 10.1016/s0959-440x(99)00047-0
|
[24] | Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91: 8324–8328. doi: 10.1073/pnas.91.18.8324
|
[25] | Sharma SV, Agatsuma T, Nakano H (1998) Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 16: 2639–2645. doi: 10.1038/sj.onc.1201790
|
[26] | Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, et al. (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100: 1523–1529.
|
[27] | Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, et al. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75. doi: 10.1016/s0092-8674(00)80314-1
|
[28] | Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143: 901–910. doi: 10.1083/jcb.143.4.901
|
[29] | Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, et al. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17: 4829–4836. doi: 10.1093/emboj/17.16.4829
|
[30] | Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581: 3758–3769. doi: 10.1016/j.febslet.2007.05.040
|
[31] | Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95: 323–348. doi: 10.1016/s0065-230x(06)95009-x
|
[32] | Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I (1994) The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 14: 1459–1464.
|
[33] | Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12: 1087–1097. doi: 10.1016/j.str.2004.03.020
|
[34] | Ratzke C, Mickler M, Hellenkamp B, Buchner J, Hugel T (2010) Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci U S A 107: 16101–16106. doi: 10.1073/pnas.1000916107
|
[35] | Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275: 37181–37186. doi: 10.1074/jbc.m003701200
|
[36] | Yun BG, Huang W, Leach N, Hartson SD, Matts RL (2004) Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry 43: 8217–8229. doi: 10.1021/bi0497998
|
[37] | Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des 18: 113–135.
|
[38] | Krüger DM, Gohlke H (2010) DrugScore(PPI) webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res 38: W480–W486. doi: 10.1093/nar/gkq471
|
[39] | Krüger DM, Gohlke H (2011) Protein-protein interactions, web-based analysis. Nachr Chem 59: 44–45. doi: 10.1002/nadc.201177770
|
[40] | Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, et al. (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screening 6: 429–440. doi: 10.1089/108705701753364922
|
[41] | Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. doi: 10.1006/jmbi.1993.1626
|
[42] | Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26: 283–291. doi: 10.1107/s0021889892009944
|
[43] | Lee CC, Lin TW, Ko TP, Wang AH (2011) The hexameric structures of human heat shock protein 90. PLoS One 6: e19961. doi: 10.1371/journal.pone.0019961
|
[44] | Sgobba M, Degliesposti G, Ferrari AM, Rastelli G (2008) Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs. Chem Biol Drug Des 71: 420–433. doi: 10.1111/j.1747-0285.2008.00650.x
|
[45] | Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, et al. (2010) Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood 116: 603–613. doi: 10.1182/blood-2009-10-248047
|
[46] | Thorn KS, Bogan AA (2001) ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17: 284–285. doi: 10.1093/bioinformatics/17.3.284
|
[47] | Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2: 2212–2221. doi: 10.1038/nprot.2007.321
|
[48] | Matulis D, Kranz JK, Salemme FR, Todd MJ (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44: 5258–5266. doi: 10.1021/bi048135v
|
[49] | Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, et al. (1997) Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci U S A 94: 14338–14342. doi: 10.1073/pnas.94.26.14338
|
[50] | Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11: 32–51. doi: 10.1007/s12575-009-9008-x
|
[51] | Archontis G, Simonson T, Karplus M (2001) Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. J Mol Biol 306: 307–327. doi: 10.1006/jmbi.2000.4285
|
[52] | Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein-protein interface determinant amino-acid residues. Proteins 68: 803–812. doi: 10.1002/prot.21396
|
[53] | Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, et al. (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10: 1147–1153. doi: 10.1038/embor.2009.153
|
[54] | Nemoto T, Sato N (1998) Oligomeric forms of the 90-kDa heat shock protein. Biochemical Journal 330 (Pt 2): 989–995.
|
[55] | Moullintraffort L, Bruneaux M, Nazabal A, Allegro D, Giudice E, et al. (2010) Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers. J Biol Chem 285: 15100–15110. doi: 10.1074/jbc.m109.094698
|
[56] | Lavinder JJ, Hari SB, Sullivan BJ, Magliery TJ (2009) High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. J Am Chem Soc 131: 3794–3795. doi: 10.1021/ja8049063
|
[57] | Mulepati S, Bailey S (2011) Structural and Biochemical Analysis of Nuclease Domain of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Protein 3 (Cas3). Journal of Biological Chemistry 286: 31896–31903. doi: 10.1074/jbc.m111.270017
|
[58] | Froese DS, Healy S, McDonald M, Kochan G, Oppermann U, et al. (2010) Thermolability of mutant MMACHC protein in the vitamin B12-responsive cblC disorder. Mol Genet Metab 100: 29–36. doi: 10.1016/j.ymgme.2010.02.005
|
[59] | Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Surg 29: 748–751. doi: 10.1016/s0741-5214(99)70329-0
|
[60] | Kervinen J, Ma H, Bayoumy S, Schubert C, Milligan C, et al. (2006) Effect of construct design on MAPKAP kinase-2 activity, thermodynamic stability and ligand-binding affinity. Arch Biochem Biophys 449: 47–56. doi: 10.1016/j.abb.2006.03.018
|
[61] | Bjork A, Mantzilas D, Sirevag R, Eijsink VG (2003) Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase. FEBS Lett 553: 423–426. doi: 10.1016/s0014-5793(03)01076-7
|
[62] | Baden EM, Owen BA, Peterson FC, Volkman BF, Ramirez-Alvarado M, et al. (2008) Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem 283: 15853–15860. doi: 10.1074/jbc.m705347200
|
[63] | Mandelman D, Schwarz FP, Li H, Poulos TL (1998) The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Sci 7: 2089–2098. doi: 10.1002/pro.5560071005
|
[64] | Mateu MG, Fersht AR (1998) Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J 17: 2748–2758. doi: 10.1093/emboj/17.10.2748
|
[65] | Cimmperman P, Baranauskiene L, Jachimoviciute S, Jachno J, Torresan J, et al. (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95: 3222–3231. doi: 10.1529/biophysj.108.134973
|
[66] | Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc-Devin J, et al. (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 277: 12208–12214. doi: 10.1074/jbc.m111874200
|
[67] | Thanos CD, DeLano WL, Wells JA (2006) Hot-spot mimicry of a cytokine receptor by a small molecule. Proc Natl Acad Sci U S A 103: 15422–15427. doi: 10.1073/pnas.0607058103
|
[68] | Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5: 161–173. doi: 10.1038/nchem.1568
|
[69] | Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, et al. (2013) Comprehensive experimental and computational analysis of binding energy hot spots at the NF-kappaB essential modulator/IKKbeta protein-protein interface. J Am Chem Soc 135: 6242–6256. doi: 10.1021/ja400914z
|
[70] | Morelli X, Bourgeas R, Roche P (2011) Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 15: 475–481. doi: 10.1016/j.cbpa.2011.05.024
|
[71] | Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41: 2644–2676. doi: 10.1002/1521-3773(20020802)41:15<2644::aid-anie2644>3.0.co;2-o
|
[72] | Metz A, Ciglia E, Gohlke H (2012) Modulating protein-protein interactions: from structural determinants of binding to druggability prediction to application. Curr Pharm Des 18: 4630–4647. doi: 10.2174/138161212802651553
|
[73] | Spanier L, Ciglia E, Hansen FK, Kuna K, Frank W, et al.. (2014) Design, synthesis, and conformational analysis of trispyrimidonamides as α-helix mimetics. J Org Chem DOI: 10.1021/jo402353z.
|
[74] | Cummings CG, Hamilton AD (2010) Disrupting protein-protein interactions with non-peptidic, small molecule alpha-helix mimetics. Curr Opin Chem Biol 14: 341–346. doi: 10.1016/j.cbpa.2010.04.001
|
[75] | Davis JM, Tsou LK, Hamilton AD (2007) Synthetic non-peptide mimetics of alpha-helices. Chem Soc Rev 36: 326–334. doi: 10.1039/b608043j
|
[76] | Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
|
[77] | Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, et al. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38: W695–699. doi: 10.1093/nar/gkq313
|
[78] | Case DA, Darden TA, Cheatham TEI, Simmerling CL, Wang J, et al.. (2010) AMBER 11. University of California, San Francisco.
|
[79] | Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
|
[80] | Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 79: 926–935. doi: 10.1063/1.445869
|
[81] | Darden T, York D, Pedersen L (1993) Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
|
[82] | Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 23: 327–341. doi: 10.1016/0021-9991(77)90098-5
|
[83] | Homeyer N, Gohlke H (2012) Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method. Mol Inf 31: 114–122. doi: 10.1002/minf.201100135
|
[84] | Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55: 383–394. doi: 10.1002/prot.20033
|
[85] | Richter K, Soroka J, Skalniak L, Leskovar A, Hessling M, et al. (2008) Conserved conformational changes in the ATPase cycle of human Hsp90. J Biol Chem 283: 17757–17765. doi: 10.1074/jbc.m800540200
|
[86] | Jancarik J, Pufan R, Hong C, Kim SH, Kim R (2004) Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins. Acta Crystallogr Sect D Biol Crystallogr 60: 1670–1673. doi: 10.1107/s0907444904010972
|