全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Association of a TNIP1 Polymorphism with Vogt-Koyanagi-Harada Syndrome but Not with Ocular Behcet’s Disease in Han Chinese

DOI: 10.1371/journal.pone.0095573

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives The aim of the study was to investigate the association of TNFα-induced protein 3 interacting with protein 1 (TNIP1) gene polymorphisms with Vogt–Koyanagi–Harada (VKH) syndrome and Behcet’s disease (BD) in a Han Chinese population. Methods A total of 656 BD patients, 961 VKH syndrome patients and 1534 healthy controls were included in this two-stage case control study. Seven SNPs, including rs17728338, rs7708392, rs10036748, rs3762999, rs999556, rs4958881 and rs3792783, belonging to TNIP1 were genotyped and analyzed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The data were analyzed by using the χ2 or Fisher's exact test and corrected for multiple comparisons by the Bonferroni method. Results A significantly increased frequency of the GG genotype and a decreased frequency of the AG genotype of rs17728338 were found in VKH patients (Pc = 0.038 OR = 1.934, 95% CI = 1.438~2.601). No significant difference was noted in allele or genotype frequencies of rs7708392, rs10036748, rs3762999, rs999556, rs4958881 and rs3792783, between VKH patients and healthy controls (Pc>0.05). No significant difference was noted in allele or genotype frequencies of the tested 7 SNPs between BD patients and healthy controls. Analysis of extraocular clinical findings, did not reveal an association of the TNIP1 gene polymorphisms with BD or VKH syndrome subgroups. Conclusion A TNIP1 polymorphism may be a risk factor for VKH syndrome in Han Chinese.

References

[1]  Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, et al. (2008) Ubiquitinbinding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27: 3739–3745. doi: 10.1038/sj.onc.1211042
[2]  Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, et al. (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–1233. doi: 10.1038/ng.468
[3]  He CF, Liu YS, Cheng YL, Gao JP, Pan TM, et al. (2010) TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 19: 1181–1186. doi: 10.1177/0961203310367918
[4]  Kawasaki A, Ito S, Furukawa H, Hayashi T, Goto D, et al. (2010) Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Res Ther 12: R174. doi: 10.1186/ar3134
[5]  Zhong H, Li XL, Li M, Hao LX, Chen RW, et al. (2011) Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res Ther 13: R186. doi: 10.1186/ar3514
[6]  Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, et al. (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41: 199–204.
[7]  Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, et al. (2010) Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet 42: 1005–1009.
[8]  Bowes J, Orozco G, Flynn E, Ho P, Brier R, et al. (2011) Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis 70: 1641–1644. doi: 10.1136/ard.2011.150102
[9]  Allanore Y, Saad M, Dieudé P, Avouac J, Distler JH, et al. (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7: e1002091. doi: 10.1371/journal.pgen.1002091
[10]  Zhang J, Chen Y, Shao Y, Wu Q, Guan M, et al. (2012) Identification of TNIP1 Polymorphisms by High Resolution Melting Analysis with Unlabelled Probe: Association with Systemic Lupus Erythematosus. Autoimmune Dis 2012: 265823. doi: 10.1155/2012/265823
[11]  Yang P, Zhang Z, Zhou H, Li B, Huang X, et al. (2005) Clinical patterns and characteristics of uveitis in a tertiary center for uveitis in China. Curr Eye Res 30: 943–948. doi: 10.1080/02713680500263606
[12]  Sakane T, Takeno M, Suzuki N, Inaba GN (1999) Beh?et's disease. Engl J Med 341: 1284–1291. doi: 10.1056/nejm199910213411707
[13]  Damico FM, Bezerra FT, Silva GC, Gasparin F, Yamamoto JH (2009) New insights into Vogt-Koyanagi-Harada disease. Arq Bras Oftalmol 72: 413–420. doi: 10.1590/s0004-27492009000300028
[14]  Weisz JM, Holland GN, Roer LN, Park MS, Yuge AJ, et al. (1995) Association between Vogt-Koyanagi-Harada syndrome and HLA-DR1 and -DR4 in Hispanic patients living in southern California. Ophthalmology 102: 1012–1015. doi: 10.1016/s0161-6420(95)30920-7
[15]  Arellanes-García L, Bautista N, Mora P, Ortega-Larrocea G, Burguet A, et al. (1998) HLA-DR is strongly associated with Vogt-Koyanagi-Harada disease in Mexican Mestizo patients. Ocul Immunol Inflamm 6: 93–100. doi: 10.1076/ocii.6.2.93.4049
[16]  Kim MH, Seong MC, Kwak NH, Yoo JS, Huh W, et al. (2000) Association of HLA with Vogt-Koyanagi-Harada syndrome in Koreans. Am J Ophthalmol 129: 173–177. doi: 10.1016/s0002-9394(99)00434-1
[17]  de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A (2009) HLA-B51/B5 and the risk of Beh?et's disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum 61: 1287–1296. doi: 10.1002/art.24642
[18]  Jiang Z, Yang P, Hou S, Li F, Zhou H (2010) Polymorphisms of IL23R and Vogt-Koyanagi-Harada syndrome in a Chinese Han population. Hum Immunol 71: 414–417. doi: 10.1016/j.humimm.2010.01.026
[19]  Kim ES, Kim SW, Moon CM, Park JJ, Kim TI, et al. (2012) Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behcet's disease in Korean population. Life Sci 90: 740–746. doi: 10.1016/j.lfs.2012.03.017
[20]  Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, et al. (2010) Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Beh?et's disease susceptibility loci.. Nat Genet 42: 703–706. doi: 10.1038/ng.624
[21]  Horie Y, Kitaichi N, Katsuyama Y, Yoshida K, Miura T, et al. (2009) Evaluation of PTPN22 polymorphisms and Vogt-Koyanagi-Harada disease in Japanese patients. Mol Vis 15: 1115–1119.
[22]  Sahin N, Bicakcigil M, Atagunduz P, Direskeneli H, Saruhan-Direskeneli G (2007) PTPN22 gene polymorphism in Beh?et's disease. Tissue Antigens 70: 432–434. doi: 10.1111/j.1399-0039.2007.00928.x
[23]  Baranathan V, Stanford MR, Vaughan RW, Kondeatis E, Graham E, et al. (2007) The association of the PTPN22 620W polymorphism with Behcet's disease. Ann Rheum Dis 66: 1531–1533. doi: 10.1136/ard.2007.073866
[24]  Yi L, Wang JC, Guo XJ, Gu YH, Tu WZ, et al. (2013) STAT4 is a genetic risk factor for systemic sclerosis in a Chinese population. Int J Immunopathol Pharmacol 26: 473–478.
[25]  Shen L, Liu R, Zhang H, Huang Y, Sun R, et al. (2013) Replication study of STAT4 rs7574865 G/T polymorphism and risk of rheumatoid arthritis in a Chinese population. Gene 526: 259–264. doi: 10.1016/j.gene.2013.05.022
[26]  Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, et al. (2001) Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131: 647–652. doi: 10.1016/s0002-9394(01)00925-4
[27]  Mignogna MD, Fedele S, Lo Russo L (2000) International diagnostic criteria and delay of diagnosis in Behcet's disease. J Rheumatol 27: 2725.
[28]  Bordaberry MF (2010) Vogt-Koyanagi-Harada disease: diagnosis and treatments update. Curr Opin Ophthalmol 21: 430–435. doi: 10.1097/icu.0b013e32833eb78c
[29]  Fang W, Yang P (2008) Vogt-koyanagi-harada syndrome.. Curr Eye Res 33: 517–523. doi: 10.1080/02713680802233968
[30]  Krause I, Weinberger A (2008) Beh?et's disease. Curr Opin Rheumatol 20: 82–87. doi: 10.1097/bor.0b013e3282f154d1
[31]  Yuan J, Yu M, Cao AL, Chen X, Zhang LH, et al. (2013) Novel Epitope from CD22 Regulates Th1 and Th17 Cell Function in Systemic Lupus Erythematosus. PLoS One 8: e64572. doi: 10.1371/journal.pone.0064572
[32]  Hu DN, Chen M, Zhang DY, Ye F, McCormick SA, et al. (2011) Interleukin-1beta increases baseline expression and secretion of interleukin-6 by human uveal melanocytes in vitro via the p38 MAPK/NF-kappaB pathway. Invest Ophthalmol Vis Sci 52: 3767–3774. doi: 10.1167/iovs.10-6908
[33]  Ramirez VP, Gurevich I, Aneskievich BJ (2012) Emerging roles for TNIP1 in regulating post-receptor signaling. Cytokine Growth Factor Rev 23: 109–118. doi: 10.1016/j.cytogfr.2012.04.002
[34]  Gurevich I, Zhang C, Francis N, Struzynsky CP, Livings SE, et al. (2013) Human TNFα-induced protein 3-interacting protein 1 (TNIP1) promoter activation is regulated by retinoic acid receptors. Gene 515: 42–48. doi: 10.1016/j.gene.2012.11.041
[35]  Gurevich I, Zhang C, Encarnacao PC, Struzynski CP, Livings SE, et al. (2012) PPARγ and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1. Biochim Biophys Acta 1819: 1–15. doi: 10.1016/j.bbagrm.2011.09.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133