全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effects of Escherichia coli on Mixotrophic Growth of Chlorella minutissima and Production of Biofuel Precursors

DOI: 10.1371/journal.pone.0096807

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23–737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.

References

[1]  Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A Look Back at the U.S. Department of Energy's Aquatic Species Program—Biodiesel from Algae. Golden, CO: National Renewable Energy Laboratory.
[2]  Tanadul OU, Vandergheynst JS, Beckles DM, Powell AL, Labavitch JM (2014) The impact of elevated CO concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol Bioeng: In Press.
[3]  Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy 88: 3524–3531. doi: 10.1016/j.apenergy.2011.04.018
[4]  Benemann J, Oswald WJ (1996) Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. Berkeley, CA: University of California Berkeley.
[5]  Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic, and mixotrophic growth conditions. Biotechnology Letters 31: 1043–1049. doi: 10.1007/s10529-009-9975-7
[6]  Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, et al. (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology 91: 835–844. doi: 10.1007/s00253-011-3399-8
[7]  Yan R, Zhu D, Zhang Z, Zeng Q, Chu J (2012) Carbon metabolism and energy conversion of Synechococcus sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. Journal of Applied Phycology 24: 657–668. doi: 10.1007/s10811-011-9683-2
[8]  Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environmental Science and Technology 44: 1813–1819. doi: 10.1021/es902838n
[9]  Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology 104: 215–230. doi: 10.1016/j.biortech.2011.11.020
[10]  Zhou W, Min M, Li Y, Hu B, Ma X, et al. (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology 110: 448–455. doi: 10.1016/j.biortech.2012.01.063
[11]  Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Applied Microbiology and Biotechnology 38: 135–138. doi: 10.1007/bf00169433
[12]  Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering 135: 1115–1122. doi: 10.1061/(asce)ee.1943-7870.0000129
[13]  de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology 48: 514–521. doi: 10.1139/w02-051
[14]  de-Bashan LE (2008) Involvement of the indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth in Chlorella vulgaris. Journal of Phycology 44: 938–947. doi: 10.1111/j.1529-8817.2008.00533.x
[15]  Lebsky VK, Gonzalez-Bashan LE, Bashan Y (2001) Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology 47: 1–8. doi: 10.1139/w00-115
[16]  Gladu PK, Patterson GW, Wikfors GH, Smith BC (1995) Sterol, fatty acid, and pigment characteristics of UTEX 2341, a marine eustigmatophyte identified previously as Chlorella minutissima (Chlorophyceae). Journal of Phycology 31: 774–777. doi: 10.1111/j.0022-3646.1995.00774.x
[17]  Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. Journal of the American Oil Chemists' Society 75: 393–397. doi: 10.1007/s11746-998-0057-0
[18]  van der Drift C, van Seggelen E, Stumm C, Hol W, Tuinte J (1977) Removal of Escherichia coli in wastewater by activated sludge. Appl Environ Microbiol 34: 315–319.
[19]  ATCC (2013) ATCC Medium 5: Sporulation Agar.
[20]  Zhang K, Farahbakhsh K (2007) Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: Implications to water reuse. Water Research 41: 2816–2824. doi: 10.1016/j.watres.2007.03.010
[21]  Guardabassi L, Wong DMALF, Dalsgaard A (2002) The effects of tertiary wastewater treatment on the prevalance of antimicrobial resistant bacteria. Water Research 36: 1955–1964. doi: 10.1016/s0043-1354(01)00429-8
[22]  Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti GM (2012) Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresource Technology 104: 523–529. doi: 10.1016/j.biortech.2011.10.025
[23]  Cheng Y-S, Zheng Y, VanderGheynst J (2011) Rapid quantitative analysis of lipid using a colorimetric method in microplate format. Lipids 46: 95–103. doi: 10.1007/s11745-010-3494-0
[24]  Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428. doi: 10.1021/ac60147a030
[25]  Oppliger A, Charriere N, Droz PO, Rinsoz T (2008) Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann Occup Hyg 52: 405–412. doi: 10.1093/annhyg/men021
[26]  Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97: 1166–1177. doi: 10.1111/j.1365-2672.2004.02409.x
[27]  Garrett RH, Grisham CM (2012) Biochemistry, 5th Edition. Mason, Ohio: Cengage Learning. pp. 578–730.
[28]  Atkins P, Paula Jd (2002) Atkins' Physical Chemistry. New York, New York: Oxford University Press. pp. 1077.
[29]  Myers JL, Well AD, Jr RFL (2010) Research Design and Statistical Analysis. 3rd ed. New York: Routledge, Taylor & Francis Group. pp. 191–193.
[30]  Devore JL (2008) Probability and Statistics for Engineering and the Sciences, Seventh Edition. Belmont, CA: Thomson Higher Education. pp. 391–392.
[31]  Box GEP, Cox DR (1964) An Analysis of Transformations. Journal of the Royal Statistical Society Series B 26: 211–252.
[32]  Scott D (2014) Box-Cox Transformations. In: Lane D, editor. Introduction to Statistics. Online: Rice University and University of Houston.
[33]  Kind T, Meissen JK, Yang D, Nocito F, Vaniya A, et al. (2012) Qualitative analysis of algal secretions with multiple mass spectrometric platforms. J Chromatogr A 1244: 139–147. doi: 10.1016/j.chroma.2012.04.074
[34]  Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71: 290–297. doi: 10.1016/j.plaphy.2013.08.003
[35]  Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90–93. doi: 10.1038/nature04056
[36]  Roessner CA, Spencer JB, Ozaki S, Min CH, Atshaves BP, et al. (1995) Overexpression in Escherichia coli of 12 Vitamin B12 Biosynthetic Enzymes. Protein Expression and Purification 6: 155–163. doi: 10.1006/prep.1995.1019
[37]  Bradbeer C, Woodrow ML (1976) Transport of vitamin B12 in Escherichia coli: energy dependence. Journal of Bacteriology 128: 99–104.
[38]  Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, et al. (2006) Indole-3-acetic acid improves Escherichia coli's defences to stress. Arch Microbiol 185: 373–382. doi: 10.1007/s00203-006-0103-y
[39]  Pratt R, Johnson E (1965) Production of thiamine, riboflavin, folic acid, and biotin by Chlorella vulgaris and Chlorella pyrenoidosa. J Pharm Sci 54: 871–874. doi: 10.1002/jps.2600540611
[40]  Pratt R, Johnson E (1966) Production of pantothenic acid and inositol by Chlorella vulgaris and C. pyrenoidosa. J Pharm Sci 55: 799–802. doi: 10.1002/jps.2600550809
[41]  Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae Symbiosis in Oxidation Ponds: III Photosynthetic Oxygenation. Sewage and Industrial Wastes 25: 692–705.
[42]  Humenik FJ, Hanna Jr GP (1971) Algal-bacterial symbiosis for removal and conservation of wastewater nutrients. Journal (Water Pollution Control Federation): 580–594.
[43]  Monod J (1949) The growth of bacterial cultures. Annual Review of Microbiology 3: 371–394. doi: 10.1146/annurev.mi.03.100149.002103
[44]  Lee Y-K, Ding S-Y, Hoe C-H, Low C-S (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. Journal of Applied Phycology 8: 163–169. doi: 10.1007/bf02186320
[45]  Glass KA, Loeffelholz JM, Ford JP, Doyle MP (1992) Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol 58: 2513–2516.
[46]  Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L (1996) Influence of the Nitrogen Source on Saccharomyces cerevisiae Anaerobic Growth and Product Formation. Applied and Environmental Microbiology 62: 3187–3195.
[47]  Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiology Reviews 63: 223–234. doi: 10.1016/0168-6445(89)90033-8
[48]  Chen F, Johns M (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology 3: 203–209. doi: 10.1007/bf00003578
[49]  Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiological Reviews 58: 700–754.
[50]  Green FB, Bernstone LS, Lundquist TJ, Oswald WJ (1996) Advanced Integrated Wastewater Pond System for Nitrogen Removal. Water Science and Technology 33: 207–217. doi: 10.1016/0273-1223(96)00356-3
[51]  Craggs RJ, Adey WH, Jessup BK, Oswald WJ (1996) A controlled stream mesocosm for tertiary treatment of sewage. Ecological Engineering 6: 149–169. doi: 10.1016/0925-8574(95)00056-9
[52]  Wang L, Min M, Li Y, Chen P, Chen Y, et al. (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162: 1174–1186. doi: 10.1007/s12010-009-8866-7
[53]  Silva-Benavides A, Torzillo G (2012) Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. Journal of Applied Phycology 24: 267–276. doi: 10.1007/s10811-011-9675-2
[54]  Ogbonna J, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. Journal of Applied Phycology 12: 277–284. doi: 10.1023/a:1008188311681
[55]  Raszka A, Chorvatova M, Wanner J (2006) The role and significance of extracellular polymers in activated sludge. Part I: Literature review. Acta hydrochimica et hydrobiologica 34: 411–424. doi: 10.1002/aheh.200500640
[56]  Lee A, Lewis D, Ashman P (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology 21: 559–567. doi: 10.1007/s10811-008-9391-8
[57]  Salim S, Bosma R, Vermu? M, Wijffels R (2011) Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology 23: 849–855. doi: 10.1007/s10811-010-9591-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133