全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Magnetic Resonance Imaging Determined Visceral Fat Reduction Associates with Enhanced IL-10 Plasma Levels in Calorie Restricted Obese Subjects

DOI: 10.1371/journal.pone.0052774

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Obesity is characterized by a low grade chronic inflammation state. Indeed circulating pro-inflammatory cytokines, such as TNF-α and IL-6, are elevated in obese subjects, while anti-inflammatory cytokines, such as IL-10, appear to be reduced. Cytokines profile improves after weight loss, but how visceral or subcutaneous fat loss respectively affect pro- or anti-inflammatory cytokines plasma levels has not been precisely assessed. Therefore in the present study we correlated changes in circulating cytokine profile with quantitative changes in visceral and subcutaneous adipose tissue depots measured by an ad hoc Magnetic Resonance Imaging (MRI) protocol before and after weight loss. Materials and Methods In 14 obese subjects, MRI determination of visceral and subcutaneous fat and plasma glucose, insulin, TNF-α IL-6, and IL-10 measurements were performed before and after a caloric restriction induced weight loss of at least 5% of the original body weight. Results Weight loss improved insulin sensitivity (QUICKI Index: 0.35±0.03 vs 0.37±0.04; P<0.05), increased IL-10 (3.4±1.9 vs 4.6±1.0 pg/mL; P<0.03), and reduced TNF-α and IL-6 plasma levels (2.5±1.3 vs 1.6±1.5 pg/mL, P<0.0015, 2.3±0.4 vs 1.6±0.6 pg/mL, P<0.02 respectively). A significant correlation was observed between the amount of visceral fat loss and the percentage reduction in both TNF-α (r = 0.56, p<0.05) and IL-6 (r = 0.19 p<0.05) plasma levels. In a multiple regression analysis, the amount of visceral fat loss independently correlated with the increase in IL-10 plasma levels. Conclusion The reduction in visceral adipose tissue is the main driver of the improved inflammatory profile induced by weight loss.

References

[1]  Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29: 2959–2971.
[2]  Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280: E745–751.
[3]  Manigrasso MR, Ferroni P, Santilli F, Taraborelli T, Guagnano MT, et al. (2005) Association between circulating adiponectin and interleukin-10 levels in android obesity: effects of weight loss. J Clin Endocrinol Metab 90: 5876–5879.
[4]  Heeschen C, Dimmeler S, Hamm CW, Fichtlscherer S, Boersma E, et al. (2003) Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation 107: 2109–2114.
[5]  Fisman EZ, Motro M, Tenenbaum A (2003) Cardiovascular diabetology in the core of a novel interleukins classification: the bad, the good and the aloof. Cardiovasc Diabetol 2: 11.
[6]  Jung SH, Park HS, Kim KS, Choi WH, Ahn CW, et al. (2008) Effect of weight loss on some serum cytokines in human obesity: increase in IL-10 after weight loss. J Nutr Biochem 19: 371–375.
[7]  Cornier MA, Marshall JA, Hill JO, Maahs DM, Eckel RH (2011) Prevention of overweight/obesity as a strategy to optimize cardiovascular health. Circulation 124: 840–850.
[8]  Indulekha K, Anjana RM, Surendar J, Mohan V (2011) Association of visceral and subcutaneous fat with glucose intolerance, insulin resistance, adipocytokines and inflammatory markers in Asian Indians (CURES-113). Clin Biochem 44: 281–287.
[9]  Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444: 881–887.
[10]  Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145: 2273–2282.
[11]  Organization WH (1997) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity. WHO/NUT/NCD/98I Geneva: World Health Organization.
[12]  Chen H, Sullivan G, Quon MJ (2005) Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes 54: 1914–1925.
[13]  Ross R, Leger L, Morris D, de Guise J, Guardo R (1992) Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 72: 787–795.
[14]  Busetto L, Tregnaghi A, Bussolotto M, Sergi G, Beninca P, et al. (2000) Visceral fat loss evaluated by total body magnetic resonance imaging in obese women operated with laparascopic adjustable silicone gastric banding. Int J Obes Relat Metab Disord 24: 60–69.
[15]  Camhi SM, Bray GA, Bouchard C, Greenway FL, Johnson WD, et al. (2011) The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity (Silver Spring) 19: 402–408.
[16]  Kuk JL, Lee S, Heymsfield SB, Ross R (2005) Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr 81: 1330–1334.
[17]  Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796–1808.
[18]  Mathieu P, Lemieux I, Despres JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 87: 407–416.
[19]  Cartier A, Cote M, Lemieux I, Perusse L, Tremblay A, et al. (2009) Age-related differences in inflammatory markers in men: contribution of visceral adiposity. Metabolism 58: 1452–1458.
[20]  Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56: 1010–1013.
[21]  Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, et al. (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51: 2951–2958.
[22]  Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P (2002) A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 26: 193–199.
[23]  Klein S, Fontana L, Young VL, Coggan AR, Kilo C, et al. (2004) Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350: 2549–2557.
[24]  Zhang H, Wang Y, Zhang J, Potter BJ, Sowers JR, et al. (2011) Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arterioscler Thromb Vasc Biol 31: 2063–2069.
[25]  Fisher G, Hyatt TC, Hunter GR, Oster RA, Desmond RA, et al. (2012) Markers of inflammation and fat distribution following weight loss in African-American and white women. Obesity (Silver Spring) 20: 715–720.
[26]  van Exel E, Gussekloo J, de Craen AJ, Frolich M, Bootsma-Van Der Wiel A, et al. (2002) Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes : the Leiden 85-Plus Study. Diabetes 51: 1088–1092.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133