[1] | Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43: 809–821.
|
[2] | Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3: 1644–1660.
|
[3] | Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5: 160–165.
|
[4] | Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64: 694–708.
|
[5] | Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181: 7149–7153.
|
[6] | Liu X, Matsumura P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176: 7345–7351.
|
[7] | Aizawa SI (1996) Flagellar assembly in Salmonella typhimurium. Mol Microbiol 19: 1–5.
|
[8] | Gillen KL, Hughes KT (1991) Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J Bacteriol 173: 6453–6459.
|
[9] | Ohnishi K, Kutsukake K, Suzuki H, Lino T (1992) A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol Microbiol. 6: 3149–3157.
|
[10] | Karlinsey JE, Lonner J, Brown KL, Hughes KT (2000) Translation/secretion coupling by type III secretion systems. Cell 102: 487–497.
|
[11] | Hughes KT, Gillen KL, Semon MJ, Karlinsey JE (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262: 1277–1280.
|
[12] | Aldridge PD, Karlinsey JE, Aldridge C, Birchall C, Thompson D, et al. (2006) The flagellar-specific transcription factor, sigma28, is the Type III secretion chaperone for the flagellar-specific anti-sigma28 factor FlgM. Genes Dev 20: 2315–2326.
|
[13] | Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, et al. (2000) Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37: 1220–1231.
|
[14] | Barembruch C, Hengge R (2007) Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol Microbiol 65: 76–89.
|
[15] | Singer HM, Erhardt M, Steiner AM, Zhang MM, Yoshikami D, et al. (2012) Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system. MBio 3.
|
[16] | Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23: 177–202.
|
[17] | Georgiou G, Segatori L (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16: 538–545.
|
[18] | Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278: 1140–1143.
|
[19] | Lloyd SA, Norman M, Rosqvist R, Wolf-Watz H (2001) Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 39: 520–531.
|
[20] | Lloyd SA, Forsberg A, Wolf-Watz H, Francis MS (2001) Targeting exported substrates to the Yersinia TTSS: different functions for different signals? Trends Microbiol 9: 367–371.
|
[21] | Majander K, Anton L, Antikainen J, Lang H, Brummer M, et al. (2005) Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nat Biotechnol 23: 475–481.
|
[22] | Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, et al. (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181: 7500–7508.
|
[23] | Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181: 2823–2833.
|
[24] | Kalir S, Alon U (2004) Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell 117: 713–720.
|
[25] | Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, et al. (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5: 476–486.
|
[26] | Tsolis RM, Adams LG, Ficht TA, Baumler AJ (1999) Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 67: 4879–4885.
|
[27] | Kutsukake K (1994) Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol Gen Genet 243: 605–612.
|
[28] | Wozniak CE, Hughes KT (2008) Genetic dissection of the consensus sequence for the class 2 and class 3 flagellar promoters. J Mol Biol 379: 936–952.
|
[29] | Wozniak CE, Lee C, Hughes KT (2009) T-POP array identifies EcnR and PefI-SrgD as novel regulators of flagellar gene expression. J Bacteriol 191: 1498–1508.
|
[30] | Yanagihara S, Iyoda S, Ohnishi K, Iino T, Kutsukake K (1999) Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet Syst 74: 105–111.
|
[31] | Yamamoto S, Kutsukake K (2006) FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium. J Bacteriol 188: 6703–6708.
|
[32] | Gringauz E, Orle KA, Waddell CS, Craig NL (1988) Recognition of Escherichia coli attTn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion. J Bacteriol 170: 2832–2840.
|
[33] | Gay NJ, Tybulewicz VL, Walker JE (1986) Insertion of transposon Tn7 into the Escherichia coli glmS transcriptional terminator. Biochem J 234: 111–117.
|
[34] | Kutsukake K, Iino T (1994) Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176: 3598–3605.
|
[35] | Minamino T, Namba K (2004) Self-assembly and type III protein export of the bacterial flagellum. J Mol Microbiol Biotechnol 7: 5–17.
|
[36] | Ide N, Ikebe T, Kutsukake K (1999) Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes Genet Syst 74: 113–116.
|
[37] | Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, et al. (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292: 2080–2083.
|
[38] | Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, et al. (2008) Evolvability and hierarchy in rewired bacterial gene networks. Nature 452: 840–845.
|
[39] | Siegele DA, Bain S, Mao W (2010) Mutations in the flhD gene of Escherichia coli K-12 do not cause the reported effect on cell division. FEMS Microbiol Lett 309: 94–99.
|
[40] | Claret L, Hughes C (2002) Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. J Mol Biol 321: 185–199.
|