New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods.
References
[1]
Fowler JS, Wolf AP (1997) Working against Time:?Rapid Radiotracer Synthesis and Imaging the Human Brain. Acc Chem Res 30: 181–188.
[2]
Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. P Natl Acad Sci USA 97: 9226–9233.
[3]
Miller PW, Long NJ, Vilar R, Gee AD (2008) Synthesis of C-11, F-18, O-15, and N-13 Radiolabels for Positron Emission Tomography. Angew Chem, Int Ed 47: 8998–9033.
[4]
Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108: 1501–1516.
[5]
Muller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: Looking beyond intuition. Science 317: 1881–1886.
[6]
Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37: 320–330.
[7]
Cai LS, Lu SY, Pike VW (2008) Chemistry with [F-18]fluoride ion. Eur J Org Chem: 2853–2873.
[8]
Furuya T, Kuttruff CA, Ritter T (2008) Carbon-fluorine bond formation. Curr Opin Drug Discov Devel 11: 803–819.
[9]
Furuya T, Kamlet AS, Ritter T (2011) Catalysis for fluorination and trifluoromethylation. Nature 473: 470–477.
[10]
O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 37: 308–319.
[11]
Bergman J, Solin O (1997) Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 24: 677–683.
Hummer G, Pratt LR, Garcia AE (1996) Free energy of ionic hydration. J Phys Chem 100: 1206–1215.
[14]
Cabarcos OM, Weinheimer CJ, Lisy JM, Xantheas SS (1999) Microscopic hydration of the fluoride anion. J Chem Phys 110: 5–8.
[15]
Serdons K, Verbruggen A, Bormans GM (2009) Developing new molecular imaging probes for PET. Methods 48: 104–111.
[16]
Serdons K, Terwinghe C, Van Vermaelen P, Laere K, Kung H, et al. (2009) Synthesis and Evaluation of 18F-Labeled 2-Phenylbenzothiazoles as Positron Emission Tomography Imaging Agents for Amyloid Plaques in Alzheimer’s Disease. J Med Chem 52: 1428–1437.
[17]
Antoni G, Langstrom B (2008) Radiopharmaceuticals: molecular imaging using positron emission tomography. Handb Exp Pharmacol: 177–201.
[18]
Modern Medicine website. Available: http://drugtopics.modernmedicine.com/dru?gtopics/data/articlestandard//drugtopics?/252011/727243/article.pdf. Accessed 2013 Feb 14.
[19]
Landvatter SW, Garnes KT, Dannals RF (1998) Progress in the synthesis of paroxetine-[18F]. In: Heys JR, Melillo DG, editors. Synthesis and Applications of Isotopically Labelled Compounds 1997. England: John Wiley & Sons Ltd. 99–102.
[20]
Suehiro M, Wilson AA, Scheffel U, Dannals RF, Ravert HT, et al. (1991) Radiosynthesis and Evaluation of N-(3-F-18 fluoropropyl)paroxetine as a Radiotracer for In Vivo Labeling of Serotonin Uptake Sites by PET. Nucl Med Biol 18: 791–796.
[21]
Kozikowski AP, Cho SJ, Jensen NH, Allen JA, Svennebring AM, et al. (2010) HTS and Rational Drug Design to Generate a Class of 5-HT2C-Selective Ligands for Possible Use in Schizophrenia. ChemMedChem 5: 1221–1225.
[22]
O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, et al. (2012) Randomized Placebo-Controlled Clinical Trial of Lorcaserin for Weight Loss in Type 2 Diabetes Mellitus: The BLOOM-DM Study. Obesity 20: 1426–1436.
[23]
Saulin A, Savli M, Lanzenberger R (2012) Serotonin and molecular neuroimaging in humans using PET. Amino Acids 42: 2039–2057.
[24]
Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, et al. (2011) A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging. Science 334: 639–642.
[25]
Teare H, Robins EG, Arstad E, Sajinder KL, Gouverneur V (2007) Synthesis and reactivity of [F-18]-N-fluorobenzenesulfonimide. Chem Comm: 2330–2332.
[26]
Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, et al. (2010) Radiosynthesis and Evaluation of (18)F Selectfluor bis(triflate). Angew Chem, Int Ed 49: 6821–6824.
[27]
Fowler JS, Shiue CY, Wolf AP, Salvadori PA, Macgregor RR (1982) Synthesis of F-18-labeled acetyl hypofluorite for radiotracer synthesis. J Labelled Compd Radiopharm 19: 1634–1636.
[28]
Furuya T, Ritter T (2008) Carbon-fluorine reductive elimination from a high-valent palladium fluoride. J Am Chem Soc 130: 10060–10061.
[29]
Furuya T, Benitez D, Tkatchouk E, Strom AE, Tang PP, et al. (2010) Mechanism of C-F Reductive Elimination from Palladium(IV) Fluorides. J Am Chem Soc 132: 3793–3807.
[30]
Furuya T, Kaiser HM, Ritter T (2008) Palladium-mediated fluorination of arylboronic acids. Angew Chem, Int Ed 47: 5993–5996.
[31]
Luedtke AT, Goldberg KI (2007) Reductive elimination of ethane from five-coordinate platinum(IV) alkyl complexes. Inorg Chem 46: 8496–8498.
[32]
Hughes G, Kimura M, Buchwald SL (2003) Catalytic enantioselective conjugate reduction of lactones and lactams. J Am Chem Soc 125: 11253–11258.
[33]
Charette AB, Juteau H, Lebel H, Molinaro C (1998) Enantioselective cyclopropanation of allylic alcohols with dioxaborolane ligands: Scope and synthetic applications. J Am Chem Soc 120: 11943–11952.
[34]
Cai L, Lu S, Pike VW (2008) Chemistry with [18F]Fluoride Ion. Eur J Org Chem 2008: 2853–2873.
[35]
Shao X, Hoareau R, Hockley BG, Tluczek LJM, Henderson BD, et al. (2011) Highlighting the versatility of the tracerlab synthesis modules. Part 1: fully automated production of F-18 labelled radiopharmaceuticals using a Tracerlab FXFN. J Labelled Compd Radiopharm 54: 292–307.
[36]
European Medicines Agency website. Available: www.ema.europa.eu/docs/en_GB/document_li?brary/Scientific_guideline/2009/09/WC500?003587.pdf. Accessed 2013 Feb 14.
[37]
Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter Receptor and Transporter Binding Profile of Antidepressants and Their Metabolites. J Pharmacol Exp Ther 283: 1305–1322.
[38]
Jiang ZJ, Reilly J, Everatt B, Briard E (2011) A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J Pharmaceut Biomed 54: 722–729.
[39]
Hinz R, Selvaraj S, Murthy NV, Bhagwagar Z, Taylor M, et al. (2008) Effects of citalopram infusion on the serotonin transporter binding of C-11 DASB in healthy controls. J Cerebr Blood F Met 28: 1478–1490.
[40]
Coenen HH, Wienhard K, Stocklin G, Laufer P, Hebold I, et al. (1988) PET Measurement of D2 and S2 Receptor-Binding of 3-N(2′-F-18 fluoroethyl)spiperone in Baboon Brain. Eur J Nucl Med 14: 80–87.
[41]
Pinborg LH, Feng L, Haahr ME, Gillings N, Dyssegaard A, et al. (2012) No change in [11C]CUMI-101 binding to 5-HT1A receptors after intravenous citalopram in human. Synapse (New York) 66: 880–884.
[42]
Centurion D, Sanchez-Lopez A, Ortiz MI, De Vries P, Saxena PR, et al. (2000) Mediation of 5-HT-induced internal carotid vasodilatation in GR127935-and ritanserin-pretreated dogs by 5-HT7 receptors. N-S Arch Pharmacol 362: 169–176.
[43]
Bergstrom M, Grahnen A, Langstrom B (2003) Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 59: 357–366.
[44]
Wang JL, Maurer L (2005) Positron emission tomography: Applications in drug discovery and drug development. Curr Top Med Chem 5: 1053–1075.
[45]
GlaxoSmithKline website. Available: http://www.gsk.ca/english/docs-pdf/Paxil?_2011.pdf. Accessed 2013 Feb 14.
[46]
Monck NJ, Kennett GA (2008) 5-HT2C ligands: recent progress. Prog Med Chem 46: 281–390.
[47]
Christianson JP, Ragole T, Amat J, Greenwood BN, Strong PV, et al. (2010) 5-Hydroxytryptamine 2C Receptors in the Basolateral Amygdala Are Involved in the Expression of Anxiety After Uncontrollable Traumatic Stress. Biol Psychiat 67: 339–345.
[48]
Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, et al. (2007) CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 52: 279–290.
[49]
Pandey SC, Lumeng L, Li TK (1996) Serotonin(2C) receptors and serotonin(2C) receptor-mediated phosphoinositide hydrolysis in the brain of alcohol-preferring and alcohol-nonpreferring rats. Alcohol Clin Exp Res 20: 1038–1042.
[50]
Knight AR, Misra A, Quirk K, Benwell K, Revell D, et al. (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT2A, 5-HT2B and 5-HT2C receptors. N-S Arch Pharmacol 370: 114–123.
[51]
Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (2001) Regional distribution and cellular localization of 5-HT2C receptor mRNA in monkey brain: Comparison with H-3 mesulergine binding sites and choline acetyltransferase mRNA. Synapse (New York) 42: 12–26.
[52]
Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, et al. (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92: 601–611.
[53]
Lee E, Hooker JM, Ritter T (2012) Nickel-Mediated Oxidative Fluorination for PET with Aqueous F-18 Fluoride. J Am Chem Soc 134: 17456–17458.