ELL associated factor 1 and ELL associated factor 2 (EAF1/2 factors) are reported to play important roles in tumor suppression and embryogenesis. Our previous studies showed that eaf factors mediated effective convergence and extension (C&E) movements and modulated mesoderm and neural patterning by regulating both non-canonical and canonical Wnt signaling in the early embryonic process. In this study, through knockdown of both eaf1 and eaf2 in embryos, we found that differentiation of primary erythroid cells was blocked, but hematopoietic precursor cells maintained in eafs morphants. Co-injection of c-myb-MO rescued the erythroid differentiation in eafs morphants, as indicated by the restored expression of the erythroid-specific gene, βe3 globin. In addition, low dosage of c-myb effectively blocked the βe3 globin expression in embryos, and did not affect the expression of markers of hematopoietic progenitor cells and other mesoderm, which was similar to the phenotypes we observed in eafs morphants. We also revealed that knockdown Wnt signaling by transiently inducing dn-Tcf in embryos at the bud stage down-regulated the increased c-myb to normal level and also restored βe3 globin expression in eafs morphants. Our evidence points to a novel role for eaf factors in controlling erythroid cell fate by regulating c-Myb expression through canonic Wnt signaling.
References
[1]
Stamatoyannopoulos G (2005) Control of globin gene expression during development and erythroid differentiation. Exp Hematol 33: 259–271.
[2]
Arinobu Y, Mizuno S, Chong Y, Shigematsu H, Iino T, et al. (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1: 416–427.
[3]
Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI (2005) Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8: 109–116.
[4]
Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH (1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93: 12355–12358.
[5]
Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, et al. (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8: 97–108.
[6]
Elagib KE, Racke FK, Mogass M, Khetawat R, Delehanty LL, et al. (2003) RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101: 4333–4341.
[7]
Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, et al. (2003) Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 23: 1390–1402.
[8]
Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19: 2331–2342.
[9]
Gering M, Yamada Y, Rabbitts TH, Patient RK (2003) Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 130: 6187–6199.
[10]
Porcher C, Liao EC, Fujiwara Y, Zon LI, Orkin SH (1999) Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development 126: 4603–4615.
[11]
Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, et al. (2003) Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22: 4478–4488.
[12]
Greig KT, Carotta S, Nutt SL (2008) Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 20: 247–256.
[13]
Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, et al. (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65: 677–689.
[14]
Lieu YK, Reddy EP (2009) Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci U S A 106: 21689–21694.
[15]
Gonda TJ, Metcalf D (1984) Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 310: 249–251.
[16]
Clarke MF, Kukowska-Latallo JF, Westin E, Smith M, Prochownik EV (1988) Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol Cell Biol 8: 884–892.
[17]
Vegiopoulos A, Garcia P, Emambokus N, Frampton J (2006) Coordination of erythropoiesis by the transcription factor c-Myb. Blood 107: 4703–4710.
[18]
Bartunek P, Kralova J, Blendinger G, Dvorak M, Zenke M (2003) GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene 22: 1927–1935.
[19]
Sankaran VG, Menne TF, Scepanovic D, Vergilio JA, Ji P, et al. (2011) MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A 108: 1519–1524.
[20]
Liu JX, Hu B, Wang Y, Gui JF, Xiao W (2009) Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression. J Biol Chem 284: 16679–16692.
[21]
Liu JX, Zhang D, Xie X, Ouyang G, Liu X, et al. (2013) Eaf1 and Eaf2 negatively regulate canonical Wnt/beta-catenin signaling. Development 140: 1067–1078.
[22]
Wan X, Ji W, Mei X, Zhou J, Liu JX, et al. (2010) Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19. PLoS One 5: e9118.
[23]
Lin YC, Kuo MW, Yu J, Kuo HH, Lin RJ, et al. (2008) c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol 25: 2189–2198.
[24]
Weidinger G, Thorpe CJ, Wuennenberg-Stapleton K, Ngai J, Moon RT (2005) The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Curr Biol 15: 489–500.
[25]
Goessling W, North TE, Loewer S, Lord AM, Lee S, et al. (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136: 1136–1147.
[26]
Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, et al. (1998) The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 197: 248–269.
[27]
Ransom DG, Bahary N, Niss K, Traver D, Burns C, et al. (2004) The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis. PLoS Biol 2: E237.
[28]
Paffett-Lugassy N, Hsia N, Fraenkel PG, Paw B, Leshinsky I, et al. (2007) Functional conservation of erythropoietin signaling in zebrafish. Blood 110: 2718–2726.
[29]
Zhou J, Feng X, Ban B, Liu J, Wang Z, et al. (2009) Elongation factor ELL (Eleven-Nineteen Lysine-rich Leukemia) acts as a transcription factor for direct thrombospondin-1 regulation. J Biol Chem 284: 19142–19152.
[30]
Wan XY, Hu B, Liu JX, Feng X, Xiao WH (2011) Zebrafish mll Gene Is Essential for Hematopoiesis. Journal of Biological Chemistry 286: 33345–33357.
[31]
Patterson LJ, Gering M, Patient R (2005) Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood 105: 3502–3511.
[32]
Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, et al. (2007) The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 109: 2389–2398.
[33]
Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, et al. (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.
[34]
Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, et al. (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2: 274–283.
[35]
Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10: 55–63.
[36]
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, et al. (2008) BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2: 72–82.
[37]
Ganis JJ, Hsia N, Trompouki E, de Jong JL, DiBiase A, et al. (2012) Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev Biol 366: 185–194.
[38]
Xiao W, Ai J, Habermacher G, Volpert O, Yang X, et al. (2009) U19/Eaf2 binds to and stabilizes von hippel-lindau protein. Cancer Res 69: 2599–2606.
[39]
Xiao W, Zhang Q, Habermacher G, Yang X, Zhang AY, et al. (2008) U19/Eaf2 knockout causes lung adenocarcinoma, B-cell lymphoma, hepatocellular carcinoma and prostatic intraepithelial neoplasia. Oncogene 27: 1536–1544.
[40]
Simone F, Luo RT, Polak PE, Kaberlein JJ, Thirman MJ (2003) ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Blood 101: 2355–2362.
[41]
Simone F, Polak PE, Kaberlein JJ, Luo RT, Levitan DA, et al. (2001) EAF1, a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein. Blood 98: 201–209.
[42]
Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, et al. (2005) c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 8: 153–166.
[43]
Tahirov TH, Sato K, Ichikawa-Iwata E, Sasaki M, Inoue-Bungo T, et al. (2002) Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Cell 108: 57–70.
[44]
Verbeek W, Gombart AF, Chumakov AM, Muller C, Friedman AD, et al. (1999) C/EBPepsilon directly interacts with the DNA binding domain of c-myb and cooperatively activates transcription of myeloid promoters. Blood 93: 3327–3337.
[45]
Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, et al. (2011) Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 39: 4664–4679.
[46]
Lorenzo PI, Brendeford EM, Gilfillan S, Gavrilov AA, Leedsak M, et al. (2011) Identification of c-Myb Target Genes in K562 Cells Reveals a Role for c-Myb as a Master Regulator. Genes Cancer 2: 805–817.
[47]
Trompouki E, Bowman TV, Lawton LN, Fan ZP, Wu DC, et al. (2011) Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 147: 577–589.