全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ATP Consumption by Sarcoplasmic Reticulum Ca2+ Pumps Accounts for 40-50% of Resting Metabolic Rate in Mouse Fast and Slow Twitch Skeletal Muscle

DOI: 10.1371/journal.pone.0068924

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main purpose of this study was to directly quantify the relative contribution of Ca2+ cycling to resting metabolic rate in mouse fast (extensor digitorum longus, EDL) and slow (soleus) twitch skeletal muscle. Resting oxygen consumption of isolated muscles (VO2, μL/g wet weight/s) measured polarographically at 30°C was ~20% higher (P<0.05) in soleus (0.326 ± 0.022) than in EDL (0.261 ± 0.020). In order to quantify the specific contribution of Ca2+ cycling to resting metabolic rate, the concentration of MgCl2 in the bath was increased to 10 mM to block Ca2+ release through the ryanodine receptor, thus eliminating a major source of Ca2+ leak from the sarcoplasmic reticulum (SR), and thereby indirectly inhibiting the activity of the sarco(endo) plasmic reticulum Ca2+-ATPases (SERCAs). The relative (%) reduction in muscle VO2 in response to 10 mM MgCl2 was similar between soleus (48.0±3.7) and EDL (42.4±3.2). Using a different approach, we attempted to directly inhibit SERCA ATPase activity in stretched EDL and soleus muscles (1.42x optimum length) using the specific SERCA inhibitor cyclopiazonic acid (CPA, up to 160 μM), but were unsuccessful in removing the energetic cost of Ca2+ cycling in resting isolated muscles. The results of the MgCl2 experiments indicate that ATP consumption by SERCAs is responsible for 40–50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30°C, or 12–15% of whole body resting VO2. Thus, SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.

References

[1]  Zurlo F, Larson K, Bogardus C, Ravussin E (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86: 1423-1427. doi:10.1172/JCI114857. PubMed: 2243122.
[2]  Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77: 731-758. PubMed: 9234964.
[3]  Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476: 3-11. doi:10.1016/j.abb.2008.04.017. PubMed: 18455499.
[4]  Inesi G, Kurzmack M, Verjovski-Almeida S (1978) ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity. Ann N Y Acad Sci 307: 224-227. doi:10.1111/j.1749-6632.1978.tb41947.x. PubMed: 152088.
[5]  de Meis L (2001) Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase: Regulation by ADP. J Biol Chem 276: 25078-25087. doi:10.1074/jbc.M103318200. PubMed: 11342561.
[6]  Smith WS, Broadbridge R, East JM, Lee AG (2002) Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Biochem J 361: 277-286. doi:10.1042/0264-6021:3610277. PubMed: 11772399.
[7]  Hasselbach W, Oetliker H (1983) Energetics and electrogenicity of the sarcoplamic reticulum calcium pump. Annu Rev Physiol 45.
[8]  Clausen T, Van Hardeveld C, Everts ME (1991) Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71: 733-774. PubMed: 2057526.
[9]  Chinet A, Decrouy A, Even PC (1992) Ca2+-dependent heat production under basal and near-basal conditions in the mouse soleus muscle. J Physiol 455: 663-678. PubMed: 1484367.
[10]  Dulloo AG, Decrouy A, Chinet A (1994) Suppression of Ca2+-dependent heat production in mouse skeletal muscle by high fish oil consumption. Metabolism 43: 931-934. doi:10.1016/0026-0495(94)90169-4. PubMed: 8052148.
[11]  Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587: 443-460. doi:10.1113/jphysiol.2008.163162. PubMed: 19029185.
[12]  Rall JA (1979) Effects of temperature on tension, tension dependent heat, and activation heat in twitches of frog skeletal muscle. J Physiol 291: 265-275. PubMed: 314511.
[13]  Wendt IR, Barclay JK (1980) Effects of dantrolene on the energetics of fast- and slow-twitch muscles of the mouse. Am J Physiol 238: C56-C61. PubMed: 7356011.
[14]  Barclay CJ (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497: 781-794. PubMed: 9003563.
[15]  Smith IC, Gittings W, Huang J, McMillan EM, Quadrilatero J et al. (2013) Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible? J Gen Physiol 141: 297-308. doi:10.1085/jgp.201210918. PubMed: 23401574.
[16]  Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89: 1153-1176. doi:10.1152/physrev.00040.2008. PubMed: 19789379.
[17]  Barclay CJ, Lichtwark GA, Curtin NA (2008) The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N-benzyl-p-toluenesulphonamide. Acta Physiol 193: 381-391. doi:10.1111/j.1748-1716.2008.01855.x. PubMed: 18373742.
[18]  Zot AS, Potter JD (1987) The effect of [Mg2+] on the Ca2+ dependence of ATPase and tension development of fast skeletal muscle: The role of the Ca2+-specific sites of troponin C. J Biol Chem 262: 1966-1969. PubMed: 2950083.
[19]  Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816-17823. PubMed: 2530215.
[20]  Goeger DE, Riley RT, Dorner JW, Cole RJ (1988) Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37: 978-981. doi:10.1016/0006-2952(88)90195-5. PubMed: 2964239.
[21]  Inesi G, Sagara Y (1994) Specific inhibitors of intracellular Ca2+ transport ATPases. J Membr Biol 141: 1-6. PubMed: 7966241.
[22]  Schacterle GR, Pollack RL (1973) A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem 51: 654-655. doi:10.1016/0003-2697(73)90523-X. PubMed: 4735559.
[23]  Tupling R, Green H, Senisterra G, Lepock J, McKee N (2001) Ischemia-induced structural change in SR Ca2+-ATPase is associated with reduced enzyme activity in rat muscle. Am J Physiol Regul Integr Comp Physiol 281: R1681-R1688. PubMed: 11641141.
[24]  Schertzer JD, Green HJ, Duhamel TA, Tupling AR (2003) Mechanisms underlying increases in SR Ca2+-ATPase activity after exercise in rat skeletal muscle. Am J Physiol 284: E597-E610.
[25]  Fu MH, Tupling AR (2009) Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK-293 cells during heat stress. Am J Physiol Heart Circ Physiol 296: H1175-H1183. doi:10.1152/ajpheart.01276.2008. PubMed: 19252085.
[26]  Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. doi:10.1038/227680a0. PubMed: 5432063.
[27]  Zubrzycka-Gaarn E, Phillips L, MacLennan DH (1984) Monoclonal antibodies to the Ca2++Mg2+-dependent ATPase of skeletal muscle sarcoplasmic reticulum--cross-reactivity with ATPase isozymes and other Ca2+-binding proteins. Prog Clin Biol Res 168: 19-23. PubMed: 6151188.
[28]  Kurebayashi N, Ogawa Y (1991) Discrimination of Ca(2+)-ATPase activity of the sarcoplasmic reticulum from actomyosin-type ATPase activity of myofibrils in skinned mammalian skeletal muscle fibres: distinct effects of cyclopiazonic acid on the two ATPase activities. J Muscle Res Cell Motil 12: 355-365. doi:10.1007/BF01738590. PubMed: 1834695.
[29]  Baudet S, Shaoulian R, Bers DM (1993) Effects of thapsigargin and cyclopiazonic acid on twitch force and sarcoplasmic reticulum Ca2+ content of rabbit ventricular muscle. Circ Res 73: 813-819. doi:10.1161/01.RES.73.5.813. PubMed: 8403252.
[30]  Block BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56: 535-577. doi:10.1146/annurev.ph.56.030194.002535. PubMed: 8010751.
[31]  Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404: 652-660. PubMed: 10766252.
[32]  D?rrscheidt-K?fer M (1976) The action of Ca2+, Mg2+ and H+ on the contraction threshold of frog skeletal muscle. Pflügers Arch 362: 33-41. doi:10.1007/BF00588678. PubMed: 3761.
[33]  Crow MT, Kushmerick MJ (1982) Chemical energetics of slow- and fast-twitch muscle of the mouse. J Gen Physiol 79: 147-166. doi:10.1085/jgp.79.1.147. PubMed: 7061985.
[34]  Decrouy A, Even PC, Chinet A (1993) Decreased rates of Ca2+-dependent heat production in slow- and fast-twitch muscles from the dystrophic (mdx) mouse. Experientia 49: 843-849. doi:10.1007/BF01952595. PubMed: 8224098.
[35]  Macdonald WA, Stephenson DG (2001) Effects of ADP on sarcoplasmic reticulum function in mechanically skinned skeletal muscle fibres of the rat. J Physiol 532: 499-508. doi:10.1111/j.1469-7793.2001.0499f.x. PubMed: 11306667.
[36]  Macdonald WA, Stephenson DG (2006) Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue. J Physiol 573: 187-198. doi:10.1113/jphysiol.2006.105775. PubMed: 16556653.
[37]  Appelt D, Buenviaje B, Champ C, Franzini-Armstrong C (1989) Quantitation of 'junctional feet' content in two types of muscle fiber from hind limb muscles of the rat. Tissue Cell 21: 783-794. doi:10.1016/0040-8166(89)90087-6. PubMed: 2617518.
[38]  Delbono O, Meissner G (1996) Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles. J Membr Biol 151: 123-130. doi:10.1007/s002329900063. PubMed: 8661500.
[39]  Wu KD, Lytton J (1993) Molecular cloning and quantification of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat muscles. Am J Physiol 264: C333-C341. PubMed: 8447366.
[40]  Vangheluwe P, Schuermans M, Zádor E, Waelkens E, Raeymaekers L et al. (2005) Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species. Biochem J 389: 151-159. doi:10.1042/BJ20050068. PubMed: 15801907.
[41]  MacLennan DH, Rice WJ, Green NM (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem 272: 28815-28818. doi:10.1074/jbc.272.46.28815. PubMed: 9360942.
[42]  Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73: 269-292. doi:10.1146/annurev.biochem.73.011303.073700. PubMed: 15189143.
[43]  Lamb GD, Cellini MA (1999) High intracellular [Ca2+] alters sarcoplasmic reticulum function in skinned skeletal muscle fibres of the rat. J Physiol 519: 815-827. doi:10.1111/j.1469-7793.1999.0815n.x. PubMed: 10457093.
[44]  Holloway GP, Green HJ, Tupling AR (2006) Differential effects of repetitive activity on sarcoplasmic reticulum responses in rat muscles of different oxidative potential. Am J Physiol 290: R393-R404. PubMed: 16179493.
[45]  Briggs FN, Lee KF, Wechsler AW, Jones LR (1992) Phospholamban expressed in slow-twitch and chronically stimulated fast-twitch muscles minimally affects calcium affinity of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem 267: 26056-26061. PubMed: 1464616.
[46]  Frank K, Tilgmann C, Shannon TR, Bers DM, Kranias EG (2000) Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Biochemistry 39: 14176-14182. doi:10.1021/bi001049k. PubMed: 11087366.
[47]  de Meis L (2001) Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep 21: 113-137. doi:10.1023/A:1013640006611. PubMed: 11725862.
[48]  Reis M, Farage M, de Meis L (2002) Thermogenesis and energy expenditure: control of heat production by the Ca2+-ATPase of fast and slow muscle. Mol Mem Biol 19: 301-310. doi:10.1080/09687680210166217.
[49]  Agbulut O, Noirez P, Beaumont F, Butler-Browne G (2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95: 399-406. doi:10.1016/S0248-4900(03)00087-X. PubMed: 14519557.
[50]  Allen DL, Harrison BC, Sartorius C, Byrnes WC, Leinwand LA (2001) Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. Am J Physiol 280: C637-C645. PubMed: 11171584.
[51]  Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC et al. (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18: 1575-1579. doi:10.1038/nm.2897. PubMed: 22961106.
[52]  Barclay CJ, Woledge RC, Curtin NA (2007) Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil 28: 259-274. doi:10.1007/s10974-007-9116-7. PubMed: 17882515.
[53]  Levine JA (2004) Non-exercise activity thermogenesis (NEAT). Nutr Rev 62: S82-S97. doi:10.1111/j.1753-4887.2004.tb00094.x. PubMed: 15387473.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133