[1] | Zurlo F, Larson K, Bogardus C, Ravussin E (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86: 1423-1427. doi:10.1172/JCI114857. PubMed: 2243122.
|
[2] | Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77: 731-758. PubMed: 9234964.
|
[3] | Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476: 3-11. doi:10.1016/j.abb.2008.04.017. PubMed: 18455499.
|
[4] | Inesi G, Kurzmack M, Verjovski-Almeida S (1978) ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity. Ann N Y Acad Sci 307: 224-227. doi:10.1111/j.1749-6632.1978.tb41947.x. PubMed: 152088.
|
[5] | de Meis L (2001) Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase: Regulation by ADP. J Biol Chem 276: 25078-25087. doi:10.1074/jbc.M103318200. PubMed: 11342561.
|
[6] | Smith WS, Broadbridge R, East JM, Lee AG (2002) Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Biochem J 361: 277-286. doi:10.1042/0264-6021:3610277. PubMed: 11772399.
|
[7] | Hasselbach W, Oetliker H (1983) Energetics and electrogenicity of the sarcoplamic reticulum calcium pump. Annu Rev Physiol 45.
|
[8] | Clausen T, Van Hardeveld C, Everts ME (1991) Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71: 733-774. PubMed: 2057526.
|
[9] | Chinet A, Decrouy A, Even PC (1992) Ca2+-dependent heat production under basal and near-basal conditions in the mouse soleus muscle. J Physiol 455: 663-678. PubMed: 1484367.
|
[10] | Dulloo AG, Decrouy A, Chinet A (1994) Suppression of Ca2+-dependent heat production in mouse skeletal muscle by high fish oil consumption. Metabolism 43: 931-934. doi:10.1016/0026-0495(94)90169-4. PubMed: 8052148.
|
[11] | Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587: 443-460. doi:10.1113/jphysiol.2008.163162. PubMed: 19029185.
|
[12] | Rall JA (1979) Effects of temperature on tension, tension dependent heat, and activation heat in twitches of frog skeletal muscle. J Physiol 291: 265-275. PubMed: 314511.
|
[13] | Wendt IR, Barclay JK (1980) Effects of dantrolene on the energetics of fast- and slow-twitch muscles of the mouse. Am J Physiol 238: C56-C61. PubMed: 7356011.
|
[14] | Barclay CJ (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497: 781-794. PubMed: 9003563.
|
[15] | Smith IC, Gittings W, Huang J, McMillan EM, Quadrilatero J et al. (2013) Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible? J Gen Physiol 141: 297-308. doi:10.1085/jgp.201210918. PubMed: 23401574.
|
[16] | Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89: 1153-1176. doi:10.1152/physrev.00040.2008. PubMed: 19789379.
|
[17] | Barclay CJ, Lichtwark GA, Curtin NA (2008) The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N-benzyl-p-toluenesulphonamide. Acta Physiol 193: 381-391. doi:10.1111/j.1748-1716.2008.01855.x. PubMed: 18373742.
|
[18] | Zot AS, Potter JD (1987) The effect of [Mg2+] on the Ca2+ dependence of ATPase and tension development of fast skeletal muscle: The role of the Ca2+-specific sites of troponin C. J Biol Chem 262: 1966-1969. PubMed: 2950083.
|
[19] | Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816-17823. PubMed: 2530215.
|
[20] | Goeger DE, Riley RT, Dorner JW, Cole RJ (1988) Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37: 978-981. doi:10.1016/0006-2952(88)90195-5. PubMed: 2964239.
|
[21] | Inesi G, Sagara Y (1994) Specific inhibitors of intracellular Ca2+ transport ATPases. J Membr Biol 141: 1-6. PubMed: 7966241.
|
[22] | Schacterle GR, Pollack RL (1973) A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem 51: 654-655. doi:10.1016/0003-2697(73)90523-X. PubMed: 4735559.
|
[23] | Tupling R, Green H, Senisterra G, Lepock J, McKee N (2001) Ischemia-induced structural change in SR Ca2+-ATPase is associated with reduced enzyme activity in rat muscle. Am J Physiol Regul Integr Comp Physiol 281: R1681-R1688. PubMed: 11641141.
|
[24] | Schertzer JD, Green HJ, Duhamel TA, Tupling AR (2003) Mechanisms underlying increases in SR Ca2+-ATPase activity after exercise in rat skeletal muscle. Am J Physiol 284: E597-E610.
|
[25] | Fu MH, Tupling AR (2009) Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK-293 cells during heat stress. Am J Physiol Heart Circ Physiol 296: H1175-H1183. doi:10.1152/ajpheart.01276.2008. PubMed: 19252085.
|
[26] | Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. doi:10.1038/227680a0. PubMed: 5432063.
|
[27] | Zubrzycka-Gaarn E, Phillips L, MacLennan DH (1984) Monoclonal antibodies to the Ca2++Mg2+-dependent ATPase of skeletal muscle sarcoplasmic reticulum--cross-reactivity with ATPase isozymes and other Ca2+-binding proteins. Prog Clin Biol Res 168: 19-23. PubMed: 6151188.
|
[28] | Kurebayashi N, Ogawa Y (1991) Discrimination of Ca(2+)-ATPase activity of the sarcoplasmic reticulum from actomyosin-type ATPase activity of myofibrils in skinned mammalian skeletal muscle fibres: distinct effects of cyclopiazonic acid on the two ATPase activities. J Muscle Res Cell Motil 12: 355-365. doi:10.1007/BF01738590. PubMed: 1834695.
|
[29] | Baudet S, Shaoulian R, Bers DM (1993) Effects of thapsigargin and cyclopiazonic acid on twitch force and sarcoplasmic reticulum Ca2+ content of rabbit ventricular muscle. Circ Res 73: 813-819. doi:10.1161/01.RES.73.5.813. PubMed: 8403252.
|
[30] | Block BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56: 535-577. doi:10.1146/annurev.ph.56.030194.002535. PubMed: 8010751.
|
[31] | Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404: 652-660. PubMed: 10766252.
|
[32] | D?rrscheidt-K?fer M (1976) The action of Ca2+, Mg2+ and H+ on the contraction threshold of frog skeletal muscle. Pflügers Arch 362: 33-41. doi:10.1007/BF00588678. PubMed: 3761.
|
[33] | Crow MT, Kushmerick MJ (1982) Chemical energetics of slow- and fast-twitch muscle of the mouse. J Gen Physiol 79: 147-166. doi:10.1085/jgp.79.1.147. PubMed: 7061985.
|
[34] | Decrouy A, Even PC, Chinet A (1993) Decreased rates of Ca2+-dependent heat production in slow- and fast-twitch muscles from the dystrophic (mdx) mouse. Experientia 49: 843-849. doi:10.1007/BF01952595. PubMed: 8224098.
|
[35] | Macdonald WA, Stephenson DG (2001) Effects of ADP on sarcoplasmic reticulum function in mechanically skinned skeletal muscle fibres of the rat. J Physiol 532: 499-508. doi:10.1111/j.1469-7793.2001.0499f.x. PubMed: 11306667.
|
[36] | Macdonald WA, Stephenson DG (2006) Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue. J Physiol 573: 187-198. doi:10.1113/jphysiol.2006.105775. PubMed: 16556653.
|
[37] | Appelt D, Buenviaje B, Champ C, Franzini-Armstrong C (1989) Quantitation of 'junctional feet' content in two types of muscle fiber from hind limb muscles of the rat. Tissue Cell 21: 783-794. doi:10.1016/0040-8166(89)90087-6. PubMed: 2617518.
|
[38] | Delbono O, Meissner G (1996) Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles. J Membr Biol 151: 123-130. doi:10.1007/s002329900063. PubMed: 8661500.
|
[39] | Wu KD, Lytton J (1993) Molecular cloning and quantification of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat muscles. Am J Physiol 264: C333-C341. PubMed: 8447366.
|
[40] | Vangheluwe P, Schuermans M, Zádor E, Waelkens E, Raeymaekers L et al. (2005) Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species. Biochem J 389: 151-159. doi:10.1042/BJ20050068. PubMed: 15801907.
|
[41] | MacLennan DH, Rice WJ, Green NM (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem 272: 28815-28818. doi:10.1074/jbc.272.46.28815. PubMed: 9360942.
|
[42] | Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73: 269-292. doi:10.1146/annurev.biochem.73.011303.073700. PubMed: 15189143.
|
[43] | Lamb GD, Cellini MA (1999) High intracellular [Ca2+] alters sarcoplasmic reticulum function in skinned skeletal muscle fibres of the rat. J Physiol 519: 815-827. doi:10.1111/j.1469-7793.1999.0815n.x. PubMed: 10457093.
|
[44] | Holloway GP, Green HJ, Tupling AR (2006) Differential effects of repetitive activity on sarcoplasmic reticulum responses in rat muscles of different oxidative potential. Am J Physiol 290: R393-R404. PubMed: 16179493.
|
[45] | Briggs FN, Lee KF, Wechsler AW, Jones LR (1992) Phospholamban expressed in slow-twitch and chronically stimulated fast-twitch muscles minimally affects calcium affinity of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem 267: 26056-26061. PubMed: 1464616.
|
[46] | Frank K, Tilgmann C, Shannon TR, Bers DM, Kranias EG (2000) Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Biochemistry 39: 14176-14182. doi:10.1021/bi001049k. PubMed: 11087366.
|
[47] | de Meis L (2001) Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep 21: 113-137. doi:10.1023/A:1013640006611. PubMed: 11725862.
|
[48] | Reis M, Farage M, de Meis L (2002) Thermogenesis and energy expenditure: control of heat production by the Ca2+-ATPase of fast and slow muscle. Mol Mem Biol 19: 301-310. doi:10.1080/09687680210166217.
|
[49] | Agbulut O, Noirez P, Beaumont F, Butler-Browne G (2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95: 399-406. doi:10.1016/S0248-4900(03)00087-X. PubMed: 14519557.
|
[50] | Allen DL, Harrison BC, Sartorius C, Byrnes WC, Leinwand LA (2001) Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. Am J Physiol 280: C637-C645. PubMed: 11171584.
|
[51] | Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC et al. (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18: 1575-1579. doi:10.1038/nm.2897. PubMed: 22961106.
|
[52] | Barclay CJ, Woledge RC, Curtin NA (2007) Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil 28: 259-274. doi:10.1007/s10974-007-9116-7. PubMed: 17882515.
|
[53] | Levine JA (2004) Non-exercise activity thermogenesis (NEAT). Nutr Rev 62: S82-S97. doi:10.1111/j.1753-4887.2004.tb00094.x. PubMed: 15387473.
|