[1] | Doxsey S, McCollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21: 411-434. doi:10.1146/annurev.cellbio.21.122303.120418. PubMed: 16212501.
|
[2] | Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8: 451-463. doi:10.1038/nrm2180. PubMed: 17505520.
|
[3] | Nigg EA, Stearns T (2011) The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13: 1154-1160. doi:10.1038/ncb2345. PubMed: 21968988.
|
[4] | Salisbury JL, Baron A, Surek B, Melkonian M (1984) Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol 99: 962-970. doi:10.1083/jcb.99.3.962. PubMed: 6381510.
|
[5] | Huang B, Mengersen A, Lee VD (1988) Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol 107: 133-140. doi:10.1083/jcb.107.1.133. PubMed: 2839516.
|
[6] | Geimer S, Melkonian M (2005) Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot Cell 4: 1253-1263. doi:10.1128/EC.4.7.1253-1263.2005. PubMed: 16002651.
|
[7] | Lee VD, Huang B (1993) Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci U S A 90: 11039-11043. doi:10.1073/pnas.90.23.11039. PubMed: 8248209.
|
[8] | Errabolu R, Sanders MA, Salisbury JL (1994) Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci 107(1): 9-16.
|
[9] | Sanders MA, Salisbury JL (1994) Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 124: 795-805. doi:10.1083/jcb.124.5.795. PubMed: 8120100.
|
[10] | Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell 76: 623-637. doi:10.1016/0092-8674(94)90503-7. PubMed: 8124706.
|
[11] | Uzawa M, Grams J, Madden B, Toft D, Salisbury JL (1995) Identification of a complex between centrin and heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation. Dev Biol 171: 51-59. doi:10.1006/dbio.1995.1259. PubMed: 7556907.
|
[12] | Paoletti A, Moudjou M, Paintrand M, Salisbury JL, Bornens M (1996) Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 109(13): 3089-3102.
|
[13] | Veeraraghavan S, Fagan PA, Hu H, Lee V, Harper JF et al. (2002) Structural independence of the two EF-hand domains of caltractin. J Biol Chem 277: 28564-28571. doi:10.1074/jbc.M112232200. PubMed: 12034713.
|
[14] | Thompson JR, Ryan ZC, Salisbury JL, Kumar R (2006) The structure of the human centrin 2-xeroderma pigmentosum group C protein complex. J Biol Chem 281: 18746-18752. doi:10.1074/jbc.M513667200. PubMed: 16627479.
|
[15] | Middendorp S, Paoletti A, Schiebel E, Bornens M (1997) Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci U S A 94: 9141-9146. doi:10.1073/pnas.94.17.9141. PubMed: 9256449.
|
[16] | Middendorp S, Kuntziger T, Abraham Y, Holmes S, Bordes N et al. (2000) A role for centrin 3 in centrosome reproduction. J Cell Biol 148: 405-416. doi:10.1083/jcb.148.3.405. PubMed: 10662768.
|
[17] | Wolfrum U, Salisbury JL (1998) Expression of centrin isoforms in the mammalian retina. Exp Cell Res 242: 10-17. doi:10.1006/excr.1998.4038. PubMed: 9665797.
|
[18] | Hart PE, Glantz JN, Orth JD, Poynter GM, Salisbury JL (1999) Testis-specific murine centrin, Cetn1: genomic characterization and evidence for retroposition of a gene encoding a centrosome protein. Genomics 60: 111-120. doi:10.1006/geno.1999.5880. PubMed: 10486202.
|
[19] | Dantas TJ, Daly OM, Morrison CG (2012) Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 69: 2979-2997. doi:10.1007/s00018-012-0961-1. PubMed: 22460578.
|
[20] | Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12: 1287-1292. doi:10.1016/S0960-9822(02)01019-9. PubMed: 12176356.
|
[21] | Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P et al. (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9: 160-170. doi:10.1038/ncb1529. PubMed: 17330329.
|
[22] | Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD et al. (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13: 190-202. doi:10.1016/j.devcel.2007.07.002. PubMed: 17681131.
|
[23] | Strnad P, Gonczy P (2008) Mechanisms of procentriole formation. Trends Cell Biol 18: 389-396. doi:10.1016/j.tcb.2008.06.004. PubMed: 18620859.
|
[24] | Yang CH, Kasbek C, Majumder S, Yusof AM, Fisk HA (2010) Mps1 Phosphorylation Sites Regulate the Function of Centrin in Centriole Assembly. Mol: Biol Cell. p. 2.
|
[25] | Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG (2011) Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. J Cell Biol 193: 307-318. doi:10.1083/jcb.201012093. PubMed: 21482720.
|
[26] | Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S et al. (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179: 321-330. doi:10.1083/jcb.200707181. PubMed: 17954613.
|
[27] | Delaval B, Covassin L, Lawson ND, Doxsey S (2011) Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish. Cell Cycle 10.
|
[28] | Wood RD (1996) DNA repair in eukaryotes. Annu Rev Biochem 65: 135-167. doi:10.1146/annurev.bi.65.070196.001031. PubMed: 8811177.
|
[29] | de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13: 768-785. doi:10.1101/gad.13.7.768. PubMed: 10197977.
|
[30] | Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685: 29-37. doi:10.1016/j.mrfmmm.2009.08.004. PubMed: 19682467.
|
[31] | Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ et al. (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223-232. doi:10.1016/S1097-2765(00)80132-X. PubMed: 9734359.
|
[32] | Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K et al. (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276: 18665-18672. doi:10.1074/jbc.M100855200. PubMed: 11279143.
|
[33] | Araujo SJ, Nigg EA, Wood RD (2001) Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 21: 2281-2291. doi:10.1128/MCB.21.7.2281-2291.2001. PubMed: 11259578.
|
[34] | Araki M, Masutani C, Maekawa T, Watanabe Y, Yamada A et al. (2000) Reconstitution of damage DNA excision reaction from SV40 minichromosomes with purified nucleotide excision repair proteins. Mutat Res 459: 147-160. doi:10.1016/S0921-8777(99)00067-1. PubMed: 10725665.
|
[35] | Krasikova YS, Rechkunova NI, Maltseva EA, Craescu CT, Petruseva IO et al. (2012) Influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged DNA. Biochemistry (Mosc) 77: 346-353. doi:10.1134/S0006297912040050.
|
[36] | Acu ID, Liu T, Suino-Powell K, Mooney SM, D’Assoro AB et al. (2010) Coordination of centrosome homeostasis and DNA repair is intact in MCF-7 and disrupted in MDA-MB 231 breast cancer cells. Cancer Res 70: 3320-3328. doi:10.1158/1538-7445.AM10-3320. PubMed: 20388771.
|
[37] | Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276: 20774-20780. doi:10.1074/jbc.M101324200. PubMed: 11279195.
|
[38] | Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294: 1351-1362. doi:10.1006/jmbi.1999.3310. PubMed: 10600390.
|
[39] | Trojan P, Rausch S, Giessl A, Klemm C, Krause E et al. (2008) Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein. Biochim Biophys Acta 1783: 1248-1260. doi:10.1016/j.bbamcr.2008.01.006. PubMed: 18269917.
|
[40] | Lukasiewicz KB, Greenwood TM, Negron VC, Bruzek AK, Salisbury JL et al. (2011) Control of centrin stability by Aurora A. PLOS ONE 6: e21291. doi:10.1371/journal.pone.0021291. PubMed: 21731694.
|
[41] | Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN (1991) Can calmodulin function without binding calcium? Cell 65: 949-959. doi:10.1016/0092-8674(91)90547-C. PubMed: 2044154.
|
[42] | Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405: 199-221. doi:10.1042/BJ20070255. PubMed: 17590154.
|
[43] | Vonderfecht T, Stemm-Wolf AJ, Hendershott M, Giddings TH Jr., Meehl JB et al. (2011) The two domains of centrin have distinct basal body functions in Tetrahymena. Mol Biol Cell 22: 2221-2234. doi:10.1091/mbc.E11-02-0151. PubMed: 21562224.
|
[44] | Popescu A, Miron S, Blouquit Y, Duchambon P, Christova P et al. (2003) Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin. J Biol Chem 278: 40252-40261. doi:10.1074/jbc.M302546200. PubMed: 12890685.
|
[45] | Wang QE, Praetorius-Ibba M, Zhu Q, El-Mahdy MA, Wani G et al. (2007) Ubiquitylation-independent degradation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair. Nucleic Acids Res 35: 5338-5350. doi:10.1093/nar/gkm550. PubMed: 17693435.
|
[46] | Camenisch U, Trautlein D, Clement FC, Fei J, Leitenstorfer A et al. (2009) Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J 28: 2387-2399. doi:10.1038/emboj.2009.187. PubMed: 19609301.
|
[47] | Trautlein D, Deibler M, Leitenstorfer A, Ferrando-May E (2010) Specific local induction of DNA strand breaks by infrared multi-photon absorption. Nucleic Acids Res 38: e14. doi:10.1093/nar/gkq321. PubMed: 19906733.
|
[48] | Alieva IB, Vorobjev IA (2004) Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a "sleeping beauty" in cultured cells? Cell Biol Int 28: 139-150. doi:10.1016/j.cellbi.2003.11.013. PubMed: 14984760.
|
[49] | Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL et al. (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151: 709-718. doi:10.1083/jcb.151.3.709. PubMed: 11062270.
|
[50] | Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E et al. (2009) hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185: 101-114. doi:10.1083/jcb.200808082. PubMed: 19349582.
|
[51] | Kohlmaier G, Loncarek J, Meng X, McEwen BF, Mogensen MM et al. (2009) Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr Biol 19: 1012-1018. doi:10.1016/j.cub.2009.05.018. PubMed: 19481460.
|
[52] | Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB et al. (2009) Control of centriole length by CPAP and CP110. Curr Biol 19: 1005-1011. doi:10.1016/j.cub.2009.05.016. PubMed: 19481458.
|
[53] | Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK (2009) CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 11: 825-831. doi:10.1038/ncb1889. PubMed: 19503075.
|
[54] | Spektor A, Tsang WY, Khoo D, Dynlacht BD (2007) Cep97 and CP110 suppress a cilia assembly program. Cell 130: 678-690. doi:10.1016/j.cell.2007.06.027. PubMed: 17719545.
|
[55] | Keller LC, Geimer S, Romijn E, Yates J 3rd, Zamora I et al. (2009) Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol Biol Cell 20: 1150-1166. doi:10.1091/mbc.E08-06-0619. PubMed: 19109428.
|
[56] | Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y et al. (2007) Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein. J Mol Biol 373: 1032-1046. doi:10.1016/j.jmb.2007.08.046. PubMed: 17897675.
|
[57] | Renaud E, Miccoli L, Zacal N, Biard DS, Craescu CT et al. (2011) Differential contribution of XPC, RAD23A, RAD23B and CENTRIN 2 to the UV-response in human cells. DNA Repair (Amst) 10: 835-847. doi:10.1016/j.dnarep.2011.05.003.
|
[58] | Klein UR, Nigg EA (2009) SUMO-dependent regulation of centrin-2. J Cell Sci 122: 3312-3321. doi:10.1242/jcs.050245. PubMed: 19706679.
|
[59] | Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S et al. (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 25: 5664-5674. doi:10.1128/MCB.25.13.5664-5674.2005. PubMed: 15964821.
|
[60] | Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159: 255-266. doi:10.1083/jcb.200204023. PubMed: 12403812.
|
[61] | Bouissou A, Verollet C, Sousa A, Sampaio P, Wright M et al. (2009) gamma}-Tubulin ring complexes regulate microtubule plus end dynamics. J Cell Biol 187: 327-334. doi:10.1083/jcb.200905060. PubMed: 19948476.
|
[62] | Kilmartin JV (2003) Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J Cell Biol 162: 1211-1221. doi:10.1083/jcb.200307064. PubMed: 14504268.
|
[63] | Li S, Sandercock AM, Conduit P, Robinson CV, Williams RL et al. (2006) Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173: 867-877. doi:10.1083/jcb.200603153. PubMed: 16785321.
|
[64] | Salisbury JL (2004) Centrosomes: Sfi1p and centrin unravel a structural riddle. Curr Biol 14: R27-R29. doi:10.1016/j.cub.2003.12.019. PubMed: 14711432.
|
[65] | Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67: 179-188. doi:10.1016/0092-8674(91)90581-I. PubMed: 1913816.
|
[66] | Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M et al. (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17: 5497-5508. doi:10.1093/emboj/17.18.5497. PubMed: 9736627.
|
[67] | Wolff A, de Nechaud B, Chillet D, Mazarguil H, Desbruyeres E et al. (1992) Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur J Cell Biol 59: 425-432. PubMed: 1493808.
|
[68] | Haren L, Remy MH, Bazin I, Callebaut I, Wright M et al. (2006) NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J Cell Biol 172: 505-515. doi:10.1083/jcb.200510028. PubMed: 16461362.
|
[69] | Conroy PC, Saladino C, Dantas TJ, Lalor P, Dockery P et al. (2012) C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle 11: 3769-3778. doi:10.4161/cc.21986. PubMed: 23070519.
|