全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Differential Contributions of Dorso-Ventral and Rostro-Caudal Prefrontal White Matter Tracts to Cognitive Control in Healthy Older Adults

DOI: 10.1371/journal.pone.0081410

Full-Text   Cite this paper   Add to My Lib

Abstract:

Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.

References

[1]  Rajah MN, D'Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128: 1964–1983.
[2]  Salthouse TA (2004) What and when of cognitive aging. Current Directions in Psychological Science 13: 140–144.
[3]  Greenwood PM (2007) Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology 21: 657–673.
[4]  Madden DJ, Bennett IJ, Song AW (2009) Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychol Rev 19: 415–435.
[5]  Fuster JM (2001) The prefrontal cortex–an update: time is of the essence. Neuron 30: 319–333.
[6]  Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167–202.
[7]  Wood JN, Grafman J (2003) Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 4: 139–147.
[8]  Blumenfeld RS, Ranganath C (2007) Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13: 280–291.
[9]  O'Reilly RC (2010) The What and How of prefrontal cortical organization. Trends Neurosci 33: 355–361.
[10]  Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360: 781–795.
[11]  Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 12: 193–200.
[12]  Buckner RL (2003) Functional-anatomic correlates of control processes in memory. J Neurosci 23: 3999–4004.
[13]  Fuster JM (2004) Upper processing stages of the perception-action cycle. Trends Cogn Sci 8: 143–145.
[14]  Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661.
[15]  Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381.
[16]  Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, et al. (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28: 7143–7152.
[17]  Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42: 183–200.
[18]  Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60: 173–196.
[19]  Burzynska AZ, Nagel IE, Preuschhof C, Li SC, Lindenberger U, et al. (2011) Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance. Cereb Cortex 21: 2261–2271.
[20]  Karlsgodt KH, van Erp TG, Poldrack RA, Bearden CE, Nuechterlein KH, et al. (2008) Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry 63: 512–518.
[21]  Edin F, Klingberg T, Johansson P, McNab F, Tegner J, et al. (2009) Mechanism for top-down control of working memory capacity. Proc Natl Acad Sci U S A 106: 6802–6807.
[22]  Charlton RA, Barrick TR, Lawes IN, Markus HS, Morris RG (2010) White matter pathways associated with working memory in normal aging. Cortex 46: 474–489.
[23]  Kennedy KM, Raz N (2009) Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47: 916–927.
[24]  Lovden M, Bodammer NC, Kuhn S, Kaufmann J, Schutze H, et al. (2010) Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia 48: 3878–3883.
[25]  van der Knaap LJ, van der Ham IJ (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223: 211–221.
[26]  Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV (2009) Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage 44: 1050–1062.
[27]  Smith EE, Salat DH, Jeng J, McCreary CR, Fischl B, et al. (2011) Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology 76: 1492–1499.
[28]  Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E (2007) Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol 28: 226–235.
[29]  Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, et al. (2000) Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 44: 259–268.
[30]  Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, et al. (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26: 1215–1227.
[31]  Persson J, Nyberg L, Lind J, Larsson A, Nilsson LG, et al. (2006) Structure-function correlates of cognitive decline in aging. Cereb Cortex 16: 907–915.
[32]  Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17: 1394–1402.
[33]  Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, et al. (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12: 174–187.
[34]  Penke L, Maniega SM, Bastin ME, Valdes Hernandez MC, Murray C, et al. (2012) Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17: 1026–1030.
[35]  Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14: 508–523.
[36]  Bor D, Cumming N, Scott CE, Owen AM (2004) Prefrontal cortical involvement in verbal encoding strategies. Eur J Neurosci 19: 3365–3370.
[37]  Blumenfeld RS, Ranganath C (2006) Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci 26: 916–925.
[38]  Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD (1997) Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cogn Psychol 33: 43–63.
[39]  Petrides M, Pandya DN (2006) Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J Comp Neurol 498: 227–251.
[40]  de Zubicaray GI, McMahon KL, Eastburn MM, Finnigan S, Humphreys MS (2005) fMRI evidence of word frequency and strength effects during episodic memory encoding. Brain Res Cogn Brain Res 22: 439–450.
[41]  Kirchhoff BA, Wagner AD, Maril A, Stern CE (2000) Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 20: 6173–6180.
[42]  Maril A, Simons JS, Mitchell JP, Schwartz BL, Schacter DL (2003) Feeling-of-knowing in episodic memory: an event-related fMRI study. Neuroimage 18: 827–836.
[43]  Ranganath C, Johnson MK, D'Esposito M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41: 378–389.
[44]  Dobbins IG, Foley H, Schacter DL, Wagner AD (2002) Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35: 989–996.
[45]  D'Esposito M, Postle BR, Jonides J, Smith EE (1999) The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proc Natl Acad Sci U S A 96: 7514–7519.
[46]  Jonides J, Nee DE (2006) Brain mechanisms of proactive interference in working memory. Neuroscience 139: 181–193.
[47]  Jonides J, Smith EE, Marshuetz C, Koeppe RA, Reuter-Lorenz PA (1998) Inhibition in verbal working memory revealed by brain activation. Proc Natl Acad Sci U S A 95: 8410–8413.
[48]  Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15: 20–25.
[49]  Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, et al. (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25: 8854–8866.
[50]  Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11: 1011–1036.
[51]  Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230: 77–87.
[52]  Badre D, D'Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19: 2082–2099.
[53]  Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181–1185.
[54]  Gilbert SJ, Spengler S, Simons JS, Steele JD, Lawrie SM, et al. (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci 18: 932–948.
[55]  Cavada C, Company T, Tejedor J, CompanyCruz-Rizzolo RJ, Reinoso-Suarez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10: 220–242.
[56]  Morecraft RJ, Geula C, Mesulam MM (1992) Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 323: 341–358.
[57]  Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16: 291–310.
[58]  Badre D, Hoffman J, Cooney JW, D'Esposito M (2009) Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat Neurosci 12: 515–522.
[59]  Desrochers TM, Badre D (2012) Finding parallels in fronto-striatal organization. Trends Cogn Sci 16: 407–408.
[60]  Christoff K, Keramatian K, Gordon AM, Smith R, Madler B (2009) Prefrontal organization of cognitive control according to levels of abstraction. Brain Res 1286: 94–105.
[61]  Wechsler D (1987) Wechsler memory scale-revised. San Antonio, TX: Psychological Corporation.
[62]  Badre D, Poldrack RA, Pare-Blagoev EJ, Insler RZ, Wagner AD (2005) Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47: 907–918.
[63]  Kohler S, Paus T, Buckner RL, Milner B (2004) Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. J Cogn Neurosci 16: 178–188.
[64]  Menon V, Boyett-Anderson JM, Schatzberg AF, Reiss AL (2002) Relating semantic and episodic memory systems. Brain Res Cogn Brain Res 13: 261–265.
[65]  Rajah MN, McIntosh AR (2005) Overlap in the functional neural systems involved in semantic and episodic memory retrieval. J Cogn Neurosci 17: 470–482.
[66]  Ratcliff R, McKoon G (1986) More on the distinction between episodic and semantic memories. J Exp Psychol Learn Mem Cogn 12: 312–313.
[67]  Thompson-Schill SL, D'Esposito M, Aguirre GK, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 94: 14792–14797.
[68]  Wagner AD, Pare-Blagoev EJ, Clark J, Poldrack RA (2001) Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 31: 329–338.
[69]  Whitney C, Kirk M, O'Sullivan J, Lambon Ralph MA, Jefferies E (2011) The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb Cortex 21: 1066–1075.
[70]  Ye Z, Zhou X (2009) Conflict control during sentence comprehension: fMRI evidence. Neuroimage 48: 280–290.
[71]  Wechsler D (1997) Wechsler adult intelligence scale. San Antonio, TX: Psychological Corporation.
[72]  Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, et al. (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12: 477–485.
[73]  Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198.
[74]  Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1S208–219.
[75]  Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8: 333–344.
[76]  Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36: 893–906.
[77]  Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15: 435–455.
[78]  Sen PN, Basser PJ (2005) A model for diffusion in white matter in the brain. Biophys J 89: 2927–2938.
[79]  Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31: 1487–1505.
[80]  Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15: 1–25.
[81]  Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34: 144–155.
[82]  Shallice T, Fletcher P, Frith CD, Grasby P, Frackowiak RS, et al. (1994) Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368: 633–635.
[83]  Ystad M, Hodneland E, Adolfsdottir S, Haasz J, Lundervold AJ, et al. (2011) Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. Neuroimage 55: 24–31.
[84]  Cabeza R, Nyberg L (2000) Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 13: 415–421.
[85]  Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380–1386.
[86]  Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313: 65–94.
[87]  Ferry AT, Ongur D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425: 447–470.
[88]  Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242: 535–560.
[89]  Van der Werf YD, Jolles J, Witter MP, Uylings HB (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39: 1047–1062.
[90]  Lepage M, Ghaffar O, Nyberg L, Tulving E (2000) Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci U S A 97: 506–511.
[91]  Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual thalamus. Neuron 71: 209–223.
[92]  Aggleton JP, O'Mara SM, Vann SD, Wright NF, Tsanov M, et al. (2010) Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31: 2292–2307.
[93]  Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262: 23–81.
[94]  Doron KW, Gazzaniga MS (2008) Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication. Cortex 44: 1023–1029.
[95]  Gazzaniga MS, Bogen JE, Sperry RW (1962) Some functional effects of sectioning the cerebral commissures in man. Proc Natl Acad Sci U S A 48: 1765–1769.
[96]  Glickstein M, Berlucchi G (2008) Classical disconnection studies of the corpus callosum. Cortex 44: 914–927.
[97]  D'Esposito M (2007) From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci 362: 761–772.
[98]  Emery L, Heaven TJ, Paxton JL, Braver TS (2008) Age-related changes in neural activity during performance matched working memory manipulation. Neuroimage 42: 1577–1586.
[99]  Haut MW, Kuwabara H, Leach S, Arias RG (2000) Neural activation during performance of number-letter sequencing. Appl Neuropsychol 7: 237–242.
[100]  Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139: 23–38.
[101]  Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3: 255–274.
[102]  Perfetti B, Saggino A, Ferretti A, Caulo M, Romani GL, et al. (2009) Differential patterns of cortical activation as a function of fluid reasoning complexity. Hum Brain Mapp 30: 497–510.
[103]  Mestres-Misse A, Turner R, Friederici AD (2012) An anterior-posterior gradient of cognitive control within the dorsomedial striatum. Neuroimage 62: 41–47.
[104]  Morcom AM, Good CD, Frackowiak RS, Rugg MD (2003) Age effects on the neural correlates of successful memory encoding. Brain 126: 213–229.
[105]  Banich MT (1998) The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 36: 128–157.
[106]  Welcome SE, Chiarello C (2008) How dynamic is interhemispheric interaction? Effects of task switching on the across-hemisphere advantage. Brain Cogn 67: 69–75.
[107]  Buchel C, Raedler T, Sommer M, Sach M, Weiller C, et al. (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14: 945–951.
[108]  Gerstorf D, Ram N, Hoppmann C, Willis SL, Schaie KW (2011) Cohort differences in cognitive aging and terminal decline in the Seattle Longitudinal Study. Dev Psychol 47: 1026–1041.
[109]  Kanaan RA, Allin M, Picchioni M, Barker GJ, Daly E, et al. (2012) Gender differences in white matter microstructure. PLoS One 7: e38272.
[110]  Catani M, Stuss DT (2012) At the forefront of clinical neuroscience. Cortex 48: 1–6.
[111]  Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, et al. (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148–1150.
[112]  Hanggi J, Koeneke S, Bezzola L, Jancke L (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp 31: 1196–1206.
[113]  Jancke L (2009) Music drives brain plasticity. F1000 Biol Rep 1: 78.
[114]  Kohannim O, Jahanshad N, Braskie MN, Stein JL, Chiang MC, et al. (2012) Predicting white matter integrity from multiple common genetic variants. Neuropsychopharmacology 37: 2012–2019.
[115]  Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, et al. (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15: 1676–1689.
[116]  Sala S, Agosta F, Pagani E, Copetti M, Comi G, et al.. (2010) Microstructural changes and atrophy in brain white matter tracts with aging. Neurobiol Aging 33: : 488–498 e482.
[117]  Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, et al. (2011) Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum Brain Mapp 33: 2390–2406.
[118]  Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, et al. (2010) Training of working memory impacts structural connectivity. J Neurosci 30: 3297–3303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133