全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Bradykinin Preconditioning Improves Therapeutic Potential of Human Endothelial Progenitor Cells in Infarcted Myocardium

DOI: 10.1371/journal.pone.0081505

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives Stem cell preconditioning (PC) is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs) with bradykinin (BK) enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. Methods The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF) levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylin?dodi-carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. Results In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. Conclusions The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

References

[1]  Hung HS, Shyu WC, Tsai CH, Hsu SH, Lin SZ (2009) Transplantation of endothelial progenitor cells as therapeutics for cardiovascular diseases. Cell Transplant 18: 1003-1012. doi:10.3727/096368909X12483162196683. PubMed: 19650968.
[2]  Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J et al. (2011) Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial Infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J 161: 487-493. doi:10.1016/j.ahj.2010.11.024. PubMed: 21392602.
[3]  Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93-98. doi:10.1161/hc0102.101442. PubMed: 11772882.
[4]  Yao Y, Li Y, Ma G, Liu N, Ju S et al. (2011) In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol 13: 303-313. doi:10.1007/s11307-010-0359-0. PubMed: 20552286.
[5]  Valen G (2003) The basic biology of apoptosis and its implications for cardiac function and viability. Ann Thorac Surg 75: S656-S660. doi:10.1016/S0003-4975(02)04687-8. PubMed: 12607708.
[6]  Haider HKh, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45: 554-566. doi:10.1016/j.yjmcc.2008.05.004. PubMed: 18561945.
[7]  Divald A, Kivity S, Wang P, Hochhauser E, Roberts B et al. (2010) Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits. Circ Res 106: 1829-1838. doi:10.1161/CIRCRESAHA.110.219485. PubMed: 20431057.
[8]  Afzal MR, Haider HKH, Idris NM, Jiang S, Ahmed RP et al. (2010) Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling. Antioxid Redox Signal 12: 693-702. doi:10.1089/ars.2009.2755. PubMed: 19751147.
[9]  Manolis AJ, Marketou ME, Gavras I, Gavras H (2010) Cardioprotective properties of bradykinin: role of the B(2) receptor. Hypertens Res 33: 772-777. doi:10.1038/hr.2010.82. PubMed: 20505673.
[10]  Yeh CH, Chen TP, Wang YC, Lin YM, Fang SW (2010) Cardiomyocytic apoptosis limited by bradykinin via restoration of nitric oxide after cardioplegic arrest. J Surg Res 163: e1-e9. doi:10.1016/S0022-4804(10)00649-9. PubMed: 20638673.
[11]  Bélichard P, Loillier B, Paquet JL, Luccarini JM, Pruneau D (1996) Haemodynamic and cardiac effects of kinin B1 and B2 receptor stimulation in conscious instrumented dogs. Br J Pharmacol 117: 1565-1571. doi:10.1111/j.1476-5381.1996.tb15322.x. PubMed: 8730755.
[12]  Kr?nkel N, Katare RG, Siragusa M, Barcelos LS, Campagnolo P et al. (2008) Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circ Res 103: 1335-1343. doi:10.1161/CIRCRESAHA.108.179952. PubMed: 18927465.
[13]  Kositprapa C, Ockaili RA, Kukreja RC (2001) Bradykinin B2 receptor is involved in the late phase of preconditioning in rabbit heart. J Mol Cell Cardiol 33: 1355–1362. doi:10.1006/jmcc.2000.1396. PubMed: 11437541.
[14]  Feng J, Bianchi C, Sandmeyer JL, Sellke FW (2005) Bradykinin preconditioning improves the profile of cell survival proteins and limits apoptosis after cardioplegic arrest. Circulation 112: I190-I195. PubMed: 16159814.
[15]  Yan F, Yao Y, Chen L, Li Y, Sheng Z et al. (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1α-CXCR4 axis. PLOS ONE 7: e37948. doi:10.1371/journal.pone.0037948. PubMed: 22815687.
[16]  Yao YY, Yin H, Shen B, Smith RS Jr, Liu Y et al. (2008) Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3beta pathway. Cardiovasc Res 80: 354-364. doi:10.1093/cvr/cvn223. PubMed: 18689794.
[17]  Barcelos LS, Duplaa C, Kr?nkel N, Graiani G, Invernici G et al. (2009) Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 104: 1095-1102. doi:10.1161/CIRCRESAHA.108.192138. PubMed: 19342601.
[18]  Buikema H, Monnink SH, Tio RA, Crijns HJ, de Zeeuw D et al. (2000) Comparison of zofenopril and lisinopril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE-inhibitors in experimental heart failure. Br J Pharmacol 130: 1999-2007. doi:10.1038/sj.bjp.0703498. PubMed: 10952693.
[19]  Baxter GF, Ebrahim Z (2002) Role of bradykinin in preconditioning and protection of the ischaemic myocardium. Br J Pharmacol 135: 843-854. doi:10.1038/sj.bjp.0704548. PubMed: 11861312.
[20]  Feng J, Li HL, Rosenkranz ER (2000) Bradykinin protects the rabbit heart after cardioplegic ischemia via NO-dependent mechanisms. Ann Thorac Surg 70: 2119–2124. doi:10.1016/S0003-4975(00)02148-2. PubMed: 11156131.
[21]  Leesar MA, Stoddard MF, Manchikalapudi S, Bolli R (1999) Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J Am Coll Cardiol 34: 639-650. doi:10.1016/S0735-1097(99)00297-1. PubMed: 10483942.
[22]  Wang N, Han Y, Tao J, Huang M, You Y et al. (2011) Overexpression of CREG attenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway. Atherosclerosis 218: 543-551. doi:10.1016/j.atherosclerosis.2011.08.002. PubMed: 21872252.
[23]  Bell RM, Yellon DM (2002) Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3kinase, Akt and eNOS. J Mol Cell Cardiol 35: 185-193.
[24]  Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R et al. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399: 601–605. doi:10.1038/21224. PubMed: 10376603.
[25]  Gr?ger M, Lebesgue D, Pruneau D, Relton J, Kim SW et al. (2005) Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25: 978–989. doi:10.1038/sj.jcbfm.9600096. PubMed: 15815587.
[26]  Liang J, Huang W, Yu X, Ashraf A, Wary KK et al. (2012) Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4)). PLOS ONE 7: e46158. doi:10.1371/journal.pone.0046158. PubMed: 23029422.
[27]  Dai Y, Xu M, Wang Y, Pasha Z, Li T et al. (2007) HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol 42: 1036-1044. doi:10.1016/j.yjmcc.2007.04.001. PubMed: 17498737.
[28]  Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18: 2021-2032. PubMed: 18506449.
[29]  Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near- infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13: 195–208. PubMed: 12541130.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133