全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Reconstructing Coherent Networks from Electroencephalography and Magnetoencephalography with Reduced Contamination from Volume Conduction or Magnetic Field Spread

DOI: 10.1371/journal.pone.0081553

Full-Text   Cite this paper   Add to My Lib

Abstract:

Volume conduction (VC) and magnetic field spread (MFS) induce spurious correlations between EEG/MEG sensors, such that the estimation of functional networks from scalp recordings is inaccurate. Imaginary coherency [1] reduces VC/MFS artefacts between sensors by assuming that instantaneous interactions are caused predominantly by VC/MFS and do not contribute to the imaginary part of the cross-spectral densities (CSDs). We propose an adaptation of the dynamic imaging of coherent sources (DICS) [2] - a method for reconstructing the CSDs between sources, and subsequently inferring functional connectivity based on coherences between those sources. Firstly, we reformulate the principle of imaginary coherency by performing an eigenvector decomposition of the imaginary part of the CSD to estimate the power that only contributes to the non-zero phase-lagged (NZPL) interactions. Secondly, we construct an NZPL-optimised spatial filter with two a priori assumptions: (1) that only NZPL interactions exist at the source level and (2) the NZPL CSD at the sensor level is a good approximation of the projected source NZPL CSDs. We compare the performance of the NZPL method to the standard method by reconstructing a coherent network from simulated EEG/MEG recordings. We demonstrate that, as long as there are phase differences between the sources, the NZPL method reliably detects the underlying networks from EEG and MEG. We show that the method is also robust to very small phase lags, noise from phase jitter, and is less sensitive to regularisation parameters. The method is applied to a human dataset to infer parts of a coherent network underpinning face recognition.

References

[1]  Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, et al. (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115: 2292–2307.
[2]  Gross J, Kujala J, H?m?l?inen M, Timmermann L, Schnitzler A, et al. (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98: 694–699.
[3]  David O, Guillemain I, Saillet S, Reyt S, Deransart C, et al. (2008) Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 6: e315 Available: http://dx.plos.org/10.1371/journal.pbio.?0060315.
[4]  Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, et al. (2004) EEG source imaging. Clin Neurophysiol 115: 2195–2222.
[5]  Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, et al. (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5: 25.
[6]  Helmholtz H (1853) über einige Gesetze der Vertheilung elektrischer Str?me in k?rperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann der Phys und Chemie 89: 211–233.
[7]  Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44: 867–880.
[8]  Kavanagh RN, Darcey TM, Lehmann D, Fender DH (1978) Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans Biomed Eng 25: 421–429.
[9]  Hillebrand A, Barnes GRR (2005) Beamformer analysis of MEG data. Int Rev Neurobiol 68: 149–171.
[10]  Kujala J, Gross J, Salmelin R (2008) Localization of correlated network activity at the cortical level with MEG. Neuroimage 39: 1706–1720.
[11]  Brookes MJ, Zumer JM, Stevenson CM, Hale JR, Barnes GR, et al. (2010) Investigating spatial specificity and data averaging in MEG. Neuroimage 49: 525–538.
[12]  Astolfi L, Cincotti F, Mattia D, Babiloni C, Carducci F, et al. (2005) Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol 116: 920–932.
[13]  Nunez PL, Srinivasan R, Wetdorp AF, Wijesinghe RS, Tucker DM, et al. (1997) EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103: 499–515.
[14]  Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337.
[15]  Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18: 555–586.
[16]  Singer W (1999) Neuronal Synchrony A Versatile Code for the Definition of Relations? Neuron 24: 49–65.
[17]  Varela F, Lachaux J, Rodriguez E, Martinerie J (2001) The Brainweb: Phase Synchronization and Large-Scale Integration. Nat Rev Neurosci 2: 229–239.
[18]  Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9: 474–480.
[19]  Lachaux J-P, Lutz A, Rudrauf D, Cosmelli D, Le Van Quyen M, et al. (2002) Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Clin Neurophysiol 32: 157–174.
[20]  Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, et al. (2007) Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex 17: 1476–1485.
[21]  Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, et al. (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA 99: 2299–2302.
[22]  Kamphuisen A, Bauer M (2008) No evidence for widespread synchronized networks in binocular rivalry: MEG frequency tagging entrains primarily early visual cortex. J Vis 8: 4–4.
[23]  Muthuraman M, Heute U, Deuschl G, Raethjen J (2010) The central oscillatory network of essential tremor. 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Buenos Aires, Argentina, Vol. 2010. pp . 154–157.
[24]  Raethjen J, Deuschl G (2012) The oscillating central network of Essential tremor. Clin Neurophysiol 123: 61–64.
[25]  Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69: 387–396.
[26]  Obrador S, Larramendi MH (1950) Some observations on the brain rhythms after surgical removal of a cerebral hemisphere. Electroencephalogr Clin Neurophysiol 2: 143–146.
[27]  Winter WR, Nunez PL, Ding J, Srinivasan R (2007) Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence. Stat Med 26: 3946–3957.
[28]  Van den Broek SPP, Reinders F, Donderwinkel M, Peters MJJ (1998) Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol 106: 522–534.
[29]  Güllmar D, Haueisen J, Eiselt M, Giessler F, Flemming L, et al. (2006) Influence of anisotropic conductivity on EEG source reconstruction: investigations in a rabbit model. IEEE Trans Biomed Eng 53: 1841–1850.
[30]  Fuchs M, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113: 702–712.
[31]  Ollikainen J (1999) Effects of local skull inhomogeneities on EEG source estimation. Med Eng Phys 21: 143–154.
[32]  Wolters CH, Grasedyck L, Hackbusch W (2004) Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem. Inverse Probl 20: 1099–1116.
[33]  Mondt JPP (1989) On the effects on source localisation of volume currents in neuroelectric and neuromagnetic signals. Phys Med Biol 34: 1073.
[34]  Nolte G (2003) The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys Med Biol 48: 3637–3652.
[35]  Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72: 184–187.
[36]  Srinivasan R, Nunez PL, Silberstein RB (1998) Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans Biomed Eng 45: 814–826.
[37]  Siapas AG (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46: 141–151.
[38]  Geselowitz DB (1967) On bioelectric potentials in an inhomogeneous volume conductor. Biophys J 7: 1–11.
[39]  Stinstra JG, Peters MJ (1998) The volume conductor may act as a temporal filter on the ECG and EEG. Med Biol Eng Comput 36: 711–716.
[40]  Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, et al. (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci USA 106: 9866–9871.
[41]  Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. Neuroimage 42: 87–98.
[42]  Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, et al. (2008) Mapping functional connectivity in patients with brain lesions. Ann Neurol 63: 193–203.
[43]  Hinkley LBN, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM, et al. (2011) Clinical Symptoms and Alpha Band Resting-State Functional Connectivity Imaging in Patients With Schizophrenia: Implications for Novel Approaches to Treatment. Biol Psychiatry 70: 1134–1142.
[44]  Sekihara K, Owen JP, Trisno S, Nagarajan SS (2011) Removal of spurious coherence in MEG source-space coherence analysis. IEEE Trans Biomed Eng 58: 3121–3129.
[45]  Schoffelen J-M, Gross J (2011) Improving the interpretability of all-to-all pairwise source connectivity analysis in MEG with nonhomogeneous smoothing. Hum Brain Mapp 32: 426–437.
[46]  Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28: 1178–1193.
[47]  Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution. Neuroimage 59: 3909–3921.
[48]  Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25: 199–211.
[49]  Mosher JC, Baillet S, Leahy RM (2003) Equivalence of linear approaches in bioelectromagnetic inverse solutions. IEEE Workshop on Statistical Signal Processing, 2003. IEEE. pp. 294–297.
[50]  Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, et al. (2000) Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity. Neuron 26: 55–67.
[51]  Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. Neuroimage 44: 947–966.
[52]  Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, et al. (2008) Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39: 1104–1120.
[53]  Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, et al. (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. Neuroimage 19: 1–15.
[54]  Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011: 156869.
[55]  Clark RD, Webster-Clark DJ (2008) Managing bias in ROC curves. J Comput Aided Mol Des 22: 141–146.
[56]  Henson RN, Mouchlianitis E, Friston KJ (2009) MEG and EEG data fusion: simultaneous localisation of face-evoked responses. Neuroimage 47: 581–589.
[57]  Henson RN, Goshen-Gottstein Y, Ganel T, Otten LJ, Quayle A, et al. (2003) Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cereb Cortex 13: 793–805.
[58]  Perrett DI, Smith PAJ, Potter DD, Mistlin AJ, Head AS, et al. (1985) Visual Cells in the Temporal Cortex Sensitive to Face View and Gaze Direction. Proc R Soc B Biol Sci 223: 293–317.
[59]  Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4: 267–278.
[60]  Narumoto J, Okada T, Sadato N, Fukui K, Yonekura Y (2001) Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Cogn Brain Res 12: 225–231.
[61]  Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, et al. (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56: 1082–1104.
[62]  Haxby JV V, Hoffman EAA, Gobbini MII (2000) The distributed human neural system for face perception. Trends Cogn Sci 4: 223–233.
[63]  Lachaux J-P, Rodriguez E, Martinerie J, Varela FJJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8: 194–208.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133