全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

BtcA, A Class IA Type III Chaperone, Interacts with the BteA N-Terminal Domain through a Globular/Non-Globular Mechanism

DOI: 10.1371/journal.pone.0081557

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bordetella pertussis, the etiological agent of “whooping cough” disease, utilizes the type III secretion system (T3SS) to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

References

[1]  Shrivastava R, Miller JF (2009) Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol 12: 88–93.
[2]  Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, et al. (2005) A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58: 267–279.
[3]  Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567–573.
[4]  Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811–825.
[5]  Ghosh P (2004) Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68: 771–795.
[6]  Lilic M, Vujanac M, Stebbins CE (2006) A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol Cell 21: 653–664.
[7]  Halavaty AS, Borek D, Tyson GH, Veesenmeyer JL, Shuvalova L, et al. (2012) Structure of the Type III Secretion Effector Protein ExoU in Complex with Its Chaperone SpcU. PLoS One 7: e49388.
[8]  Gendrin C, Contreras-Martel C, Bouillot S, Elsen S, Lemaire D, et al. (2012) Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathog 8: e1002637.
[9]  French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, et al. (2009) The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11: 1735–1749.
[10]  Guttman C, Davidov G, Shaked H, Kolusheva S, Bitton R, et al. (2013) Characterization of the N-Terminal Domain of BteA: A Bordetella Type III Secreted Cytotoxic Effector. PLoS One 8: e55650.
[11]  Birtalan S, Ghosh P (2001) Structure of the Yersinia type III secretory system chaperone SycE. Nat Struct Biol 8: 974–978.
[12]  Locher M, Lehnert B, Krauss K, Heesemann J, Groll M, et al. (2005) Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT. J Biol Chem 280: 31149–31155.
[13]  McGuffin LJ, Buenavista MT, Roche DB (2013) The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 41: W368–W372.
[14]  Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A (2001) A study of quality measures for protein threading models. BMC Bioinformatics 2: 5.
[15]  Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71: 261–277.
[16]  Guex N, Diemand A, Peitsch MC (1999) Protein modelling for all. Trends Biochem Sci 24: 364–367.
[17]  Delano W (2002) The PyMOL Molecular Graphics System. In: S Carlos, editor editors. : DeLano Scientific.
[18]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
[19]  Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191.
[20]  Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32: W668–673.
[21]  Andrade MA, Chacon P, Merelo JJ, Moran F (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6: 383–390.
[22]  Carn F, Guyot S, Baron A, Pérez J, Buhler E, et al. (2012) Structural Properties of Colloidal Complexes between Condensed Tannins and Polysaccharide Hyaluronan. Biomacromolecules 13: 751–759.
[23]  Guinier A, Fournet G (1955) Small-angle scattering of X-rays. New York: Wiley.
[24]  Svergun D (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography 25: 495–503.
[25]  Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography 36: 860–864.
[26]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
[27]  DeLano WL (2002) The PyMOL Molecular Graphics System. San Carlos: DeLano Scientific.
[28]  Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: New perspectives for sequential NMR assignment of large proteins. Proceedings of the National Academy of Sciences 95: 13585–13590.
[29]  Salzmann M, Wider G, Pervushin K, Senn H, Wüthrich K (1999) TROSY-type Triple-Resonance Experiments for Sequential NMR Assignments of Large Proteins. Journal of the American Chemical Society 121: 844–848.
[30]  Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 35: 1100–1125.
[31]  Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0—remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 38: W576–581.
[32]  Janjusevic R, Quezada CM, Small J, Stebbins CE (2012) Structure of the HopA1(21-102)-ShcA Chaperone-Effector Complex of Pseudomonas syringae Reveals Conservation of a Virulence Factor Binding Motif from Animal to Plant Pathogens. J Bacteriol 195: 658–664.
[33]  Chen H, Zhou H-X (2005) Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Research 33: 3193–3199.
[34]  Zuiderweg ER (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41: 1–7.
[35]  Kleckner IR, Foster MP (2010) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814: 942–968.
[36]  Stebbins CE, Galan JE (2001) Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414: 77–81.
[37]  Schubot FD, Jackson MW, Penrose KJ, Cherry S, Tropea JE, et al. (2005) Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol 346: 1147–1161.
[38]  Vogelaar NJ, Jing X, Robinson HH, Schubot FD (2010) Analysis of the crystal structure of the ExsC.ExsE complex reveals distinctive binding interactions of the Pseudomonas aeruginosa type III secretion chaperone ExsC with ExsE and ExsD. Biochemistry 49: 5870–5879.
[39]  Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76: 2879–2886.
[40]  Vujanac M, Stebbins CE (2013) Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH-YopH chaperone-effector complex. Acta Crystallogr D Biol Crystallogr 69: 546–554.
[41]  Letzelter M, Sorg I, Mota LJ, Meyer S, Stalder J, et al. (2006) The discovery of SycO highlights a new function for type III secretion effector chaperones. Embo J 25: 3223–3233.
[42]  Birtalan SC, Phillips RM, Ghosh P (2002) Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol Cell 9: 971–980.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133