We reported recently that apoptosis-stimulating protein of p53 (ASPP) 2, an activator of p53, co-operates with oncogenic RAS to enhance the transcription and apoptotic function of p53. However, the detailed mechanism remains unknown. Here we show that ASPP2 is a novel substrate of mitogen-activated protein kinase (MAPK). Phosphorylation of ASPP2 by MAPK is required for RAS-induced increased binding to p53 and increased transactivation of pro-apoptotic genes. In contrast, an ASPP2 phosphorylation mutant exhibits reduced p53 binding and fails to enhance transactivation and apoptosis. Thus phosphorylation of ASPP2 by RAS/MAPK pathway provides a novel link between RAS and p53 in regulating apoptosis.
References
[1]
Russo A, Bazan V, Agnese V, Rodolico V, Gebbia N (2005) Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies. Ann Oncol 16 Suppl 4: iv44-iv49. PubMed: 15923428.
[2]
Wang Y, Godin-Heymann N, Dan Wang X, Bergamaschi D, Llanos S et al. (2013) ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells. Cell Death Differ 20: 525-534. doi:10.1038/cdd.2013.3. PubMed: 23392125.
[3]
Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21-44. doi:10.1080/02699050500284218. PubMed: 16393692.
[4]
Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75: 50-83. doi:10.1128/MMBR.00031-10. PubMed: 21372320.
[5]
Trigiante G, Lu X (2006) ASPP [corrected] and cancer. Nat Rev Cancer 6: 217-226. doi:10.1038/nrc1818. PubMed: 16498444.
[6]
Wang Z, Liu Y, Takahashi M, Van Hook K, Kampa-Schittenhelm KM et al. (2013) N terminus of ASPP2 binds to Ras and enhances Ras/Raf/MEK/ERK activation to promote oncogene-induced senescence. Proc Natl Acad Sci U S A 110: 312-317. doi:10.1073/pnas.1201514110. PubMed: 23248303.
[7]
Cong W, Hirose T, Harita Y, Yamashita A, Mizuno K et al. (2010) ASPP2 regulates epithelial cell polarity through the PAR complex. Curr Biol 20: 1408-1414. doi:10.1016/j.cub.2010.06.024. PubMed: 20619648.
[8]
Sottocornola R, Royer C, Vives V, Tordella L, Zhong S et al. (2010) ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell 19: 126-137. doi:10.1016/j.devcel.2010.06.003. PubMed: 20619750.
[9]
Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK et al. (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8: 781-794. doi:10.1016/S1097-2765(01)00367-7. PubMed: 11684014.
[10]
Wang Y, Wang XD, Lapi E, Sullivan A, Jia W et al. (2012) Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci U S A 109: 13325-13330. doi:10.1073/pnas.1120193109. PubMed: 22847423.
[11]
Wang Y, Ngo VN, Marani M, Yang Y, Wright G et al. (2010) Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29: 4658-4670. doi:10.1038/onc.2010.218. PubMed: 20562906.
[12]
Sapkota GP, Boudeau J, Deak M, Kieloch A, Morrice N et al. (2002) Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J 362: 481-490. doi:10.1042/0264-6021:3620481. PubMed: 11853558.
[13]
Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11-22. doi:10.1038/nri979. PubMed: 12509763.
[14]
Sridhar SS, Hedley D, Siu LL (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4: 677-685. doi:10.1158/1535-7163.MCT-04-0297. PubMed: 15827342.
[15]
Vives V, Su J, Zhong S, Ratnayaka I, Slee E et al. (2006) ASPP2 is a haploinsufficient tumor suppressor that cooperates with p53 to suppress tumor growth. Genes Dev 20: 1262-1267. doi:10.1101/gad.374006. PubMed: 16702401.
[16]
Kampa KM, Acoba JD, Chen D, Gay J, Lee H et al. (2009) Apoptosis-stimulating protein of p53 (ASPP2) heterozygous mice are tumor-prone and have attenuated cellular damage-response thresholds. Proc Natl Acad Sci U S A 106: 4390-4395. doi:10.1073/pnas.0809080106. PubMed: 19251665.
[17]
Zhao J, Wu G, Bu F, Lu B, Liang A et al. (2010) Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology 51: 142-153. doi:10.1002/hep.23247. PubMed: 20034025.
[18]
Liu ZJ, Lu X, Zhang Y, Zhong S, Gu SZ et al. (2005) Downregulated mRNA expression of ASPP and the hypermethylation of the 5'-untranslated region in cancer cell lines retaining wild-type p53. FEBS Lett 579: 1587-1590. doi:10.1016/j.febslet.2005.01.069. PubMed: 15757645.
[19]
Sarraf SA, Stancheva I (2004) Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15: 595-605. doi:10.1016/j.molcel.2004.06.043. PubMed: 15327775.
[20]
Lossos IS, Natkunam Y, Levy R, Lopez CD (2002) Apoptosis stimulating protein of p53 (ASPP2) expression differs in diffuse large B-cell and follicular center lymphoma: correlation with clinical outcome. Leuk Lymphoma 43: 2309-2317. doi:10.1080/1042819021000040017. PubMed: 12613517.
[21]
Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR Jr. et al. (1999) In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59: 5656-5661. PubMed: 10582678.