全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Lysophosphatidic Acid Enhances Stromal Cell-Directed Angiogenesis

DOI: 10.1371/journal.pone.0082134

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ischemic diseases such as peripheral vascular disease (PVD) affect more than 15% of the general population and in severe cases result in ulcers, necrosis, and limb loss. While the therapeutic delivery of growth factors to promote angiogenesis has been widely investigated, large-scale implementation is limited by strategies to effectively deliver costly recombinant proteins. Multipotent adipose-derived stromal cells (ASC) and progenitor cells from other tissue compartments secrete bioactive concentrations of angiogenic molecules, making cell-based strategies for in situ delivery of angiogenic cytokines an exciting alternative to the use of recombinant proteins. Here, we show that the phospholipid lysophosphatidic acid (LPA) synergistically improves the proangiogenic effects of ASC in ischemia. We found that LPA upregulates angiogenic growth factor production by ASC under two- and three-dimensional in vitro models of serum deprivation and hypoxia (SD/H), and that these factors significantly enhance endothelial cell migration. The concurrent delivery of LPA and ASC in fibrin gels significantly improves vascularization in a murine critical hindlimb ischemia model compared to LPA or ASC alone, thus exhibiting the translational potential of this method. Furthermore, these results are achieved using an inexpensive lipid molecule, which is orders-of-magnitude less costly than recombinant growth factors that are under investigation for similar use. Our results demonstrate a novel strategy for enhancing cell-based strategies for therapeutic angiogenesis, with significant applications for treating ischemic diseases.

References

[1]  Peach G, Griffin M, Jones KG, Thompson MM, Hinchliffe RJ (2012) Diagnosis and management of peripheral arterial disease. BMJ 345: e5208. doi:10.1136/bmj.e5208. PubMed: 22893640.
[2]  Shammas NW (2007) Epidemiology, classification, and modifiable risk factors of peripheral arterial disease. Vasc Health Risk Manag 3: 229-234. doi:10.2147/vhrm.2007.3.2.229. PubMed: 17580733.
[3]  Silva EA, Mooney DJ (2007) Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 5: 590-598. doi:10.1111/j.1538-7836.2007.02386.x. PubMed: 17229044.
[4]  Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438: 967-974. doi:10.1038/nature04483. PubMed: 16355214.
[5]  Silva EA, Kim ES, Kong HJ, Mooney DJ (2008) Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A 105: 14347-14352. doi:10.1073/pnas.0803873105. PubMed: 18794520.
[6]  Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T et al. (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13: 77-81. doi:10.5551/jat.13.77. PubMed: 16733294.
[7]  Katare R, Riu F, Rowlinson J, Lewis A, Holden R et al. (2013) Perivascular Delivery of Encapsulated Mesenchymal Stem Cells Improves Postischemic Angiogenesis Via Paracrine Activation of VEGF-A. Arterioscler Thromb Vasc Biol 33: 1872–1880. PubMed: 23766261.
[8]  Cheung WK, Working DM, Galuppo LD, Leach JK (2010) Osteogenic comparison of expanded and uncultured adipose stromal cells. Cytotherapy 12: 554-562. doi:10.3109/14653241003709694. PubMed: 20370353.
[9]  Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45: 115-120. doi:10.1016/j.ymeth.2008.03.006. PubMed: 18593609.
[10]  Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9: 107-115. doi:10.1038/nrd3055. PubMed: 20118961.
[11]  de Villiers JA, Houreld N, Abrahamse H (2009) Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine. Stem Cell Rev 5: 256-265. doi:10.1007/s12015-009-9084-y.
[12]  He J, Genetos DC, Yellowley CE, Leach JK (2010) Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. J Cell Biochem 110: 87-96. PubMed: 20213746.
[13]  Tigyi G (2010) Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 161: 241-270. doi:10.1111/j.1476-5381.2010.00815.x. PubMed: 20735414.
[14]  Moolenaar WH (1995) Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270: 12949-12952. doi:10.1074/jbc.270.22.12949. PubMed: 7768880.
[15]  Chen J, Baydoun AR, Xu R, Deng L, Liu X et al. (2008) Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells 26: 135-145. doi:10.1634/stemcells.2007-0098. PubMed: 17932426.
[16]  Masiello LM, Fotos JS, Galileo DS, Karin NJ (2006) Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells. Bone 39: 72-82. doi:10.1016/j.bone.2005.12.013. PubMed: 16487757.
[17]  Mansell JP, Blackburn J (2013) Lysophosphatidic acid, human osteoblast formation, maturation and the role of 1alpha,25-Dihydroxyvitamin D3 (calcitriol). Biochim Biophys Acta 1831: 105-108.
[18]  Lee MJ, Jeon ES, Lee JS, Cho M, Suh DS et al. (2008) Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem 104: 499-510. doi:10.1002/jcb.21641. PubMed: 18027882.
[19]  Jeon ES, Heo SC, Lee IH, Choi YJ, Park JH et al. (2010) Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 alpha from human mesenchymal stem cells. Exp Mol Med 42: 280-293. doi:10.3858/emm.2010.42.4.027. PubMed: 20177148.
[20]  Park SY, Jeong KJ, Lee J, Yoon DS, Choi WS et al. (2007) Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: their inhibition by resveratrol. Cancer Lett 258: 63-69. doi:10.1016/j.canlet.2007.08.011. PubMed: 17919812.
[21]  Lee J, Park SY, Lee EK, Park CG, Chung HC et al. (2006) Activation of hypoxia-inducible factor-1alpha is necessary for lysophosphatidic acid-induced vascular endothelial growth factor expression. Clin Cancer Res 12: 6351-6358. doi:10.1158/1078-0432.CCR-06-1252. PubMed: 17085645.
[22]  Binder BY, Genetos DC, Leach JK (2013) Lysophosphatidic acid protects human mesenchymal stromal cells from differentiation-dependent vulnerability to apoptosis. Tissue Eng Part A. In press PubMed: 24131310.
[23]  Hoch AI, Binder BY, Genetos DC, Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLOS ONE 7: e35579. doi:10.1371/journal.pone.0035579. PubMed: 22536411.
[24]  Davis HE, Miller SL, Case EM, Leach JK (2011) Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 7: 691-699. doi:10.1016/j.actbio.2010.09.007. PubMed: 20837168.
[25]  Murphy KC, Leach JK (2012) A reproducible, high throughput method for fabricating fibrin gels. BMC Res Notes 5: 423. doi:10.1186/1756-0500-5-423. PubMed: 22873708.
[26]  Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA (2011) Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29: 1727-1737. doi:10.1002/stem.720. PubMed: 21898687.
[27]  He J, Genetos DC, Leach JK (2010) Osteogenesis and trophic factor secretion are influenced by the composition of hydroxyapatite/poly(lactide-co-glycolide?)composite scaffolds. Tissue Eng Part A 16: 127-137. doi:10.1089/ten.tea.2009.0255. PubMed: 19642853.
[28]  van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936: 426-437. PubMed: 11460496.
[29]  Davis HE, Leach JK (2011) Designing bioactive delivery systems for tissue regeneration. Ann Biomed Eng 39: 1-13. doi:10.1007/s10439-010-0135-y. PubMed: 20676773.
[30]  Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ et al. (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27: 264-271. doi:10.1007/s11095-009-0014-0. PubMed: 19953308.
[31]  Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13: 9-22. PubMed: 9872925.
[32]  Saranadasa M, Wang ES (2011) Vascular endothelial growth factor inhibition: conflicting roles in tumor growth. Cytokine 53: 115-129. doi:10.1016/j.cyto.2010.06.012. PubMed: 20708948.
[33]  Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC et al. (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17: 2260-2262. PubMed: 14563693.
[34]  Guo HD, Cui GH, Yang JJ, Wang C, Zhu J et al. (2012) Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction. Biochem Biophys Res Commun 424: 105-111. doi:10.1016/j.bbrc.2012.06.080. PubMed: 22732415.
[35]  Kim JH, Jung Y, Kim SH, Sun K, Choi J et al. (2011) The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials 32: 6080-6088. PubMed: 21636123.
[36]  Systems RD (2012). R&D Systems Annual Catalog.
[37]  Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4: 397-407. doi:10.1038/nrm1103. PubMed: 12728273.
[38]  Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A et al. (2007) Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 27: 275-282. PubMed: 17158356.
[39]  Ozaki H, Hla T, Lee MJ (2003) Sphingosine-1-phosphate signaling in endothelial activation. J Atheroscler Thromb 10: 125-131. doi:10.5551/jat.10.125. PubMed: 14564080.
[40]  Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97: 512-523. doi:10.1161/01.RES.0000182903.16652.d7. PubMed: 16166562.
[41]  Liu X, Hou J, Shi L, Chen J, Sang J et al. (2009) Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev 18: 947-954. doi:10.1089/scd.2008.0352. PubMed: 19193014.
[42]  Chamberlain G, Wright K, Rot A, Ashton B, Middleton J (2008) Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PLOS ONE 3: e2934. doi:10.1371/journal.pone.0002934. PubMed: 18698345.
[43]  Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29: 313-326. doi:10.1089/jir.2008.0027. PubMed: 19441883.
[44]  Rivera-Lopez CM, Tucker AL, Lynch KR (2008) Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis 11: 301-310. doi:10.1007/s10456-008-9113-5. PubMed: 18504643.
[45]  Pyne NJ, Pyne S (2008) Sphingosine 1-phosphate, lysophosphatidic acid and growth factor signaling and termination. Biochim Biophys Acta 1781: 467-476. doi:10.1016/j.bbalip.2008.05.004. PubMed: 18558100.
[46]  Awojoodu AO, Ogle ME, Sefcik LS, Bowers DT, Martin K et al. (2013) Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc Natl Acad Sci U S A 110: 13785-13790. doi:10.1073/pnas.1221309110. PubMed: 23918395.
[47]  Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T et al. (2008) Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 10: 417-426. doi:10.1080/14653240801982979. PubMed: 18574774.
[48]  Riordan NH, Ichim TE, Min WP, Wang H, Solano F et al. (2009) Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 7: 29. doi:10.1186/1479-5876-7-29. PubMed: 19393041.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133