全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Synergistic Interactions between Alzheimer’s Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed by Single Molecule Microscopy

DOI: 10.1371/journal.pone.0082139

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the extracellular brain deposits associated with Alzheimer’s disease. While Aβ40 is the prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid deposits over the course of disease development. The low in vivo concentration (pM-nM) and metastable nature of Aβ oligomers have made identification of their size, composition, cellular binding sites and mechanism of action challenging and elusive. Furthermore, recent studies have suggested that synergistic effects between Aβ40 and Aβ42 alter both the formation and stability of various peptide oligomers as well as their cytotoxicity. These studies often utilized Aβ oligomers that were prepared in solution and at μM peptide concentrations. The current work was performed using physiological Aβ concentrations and single-molecule microscopy to follow peptide binding and association on primary cultured neurons. When the cells were exposed to a 1:1 mixture of nM Aβ40:Aβ42, significantly larger membrane-bound oligomers developed compared to those formed from either peptide alone. Fluorescence resonance energy transfer experiments at the single molecule level reveal that these larger oligomers contained both Aβ40 and Aβ42, but that the growth of these oligomers was predominantly by addition of Aβ42. Both pure peptides form very few oligomers larger than dimers, but either membrane bound Aβ40/42 complex, or Aβ40, bind Aβ42 to form increasingly larger oligomers. These findings may explain how Aβ42-dominant oligomers, suspected of being more cytotoxic, develop on the neuronal membrane under physiological conditions.

References

[1]  Glenner GG, Wong CW (1984) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: 885–890. doi:10.1016/S0006-291X(84)80190-4. PubMed: 6375662.
[2]  Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, et al. (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). The Journal of biological chemistry 270: 7013–7016.
[3]  Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, et al. (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 13: 45–53.
[4]  Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264: 1336–1340. doi:10.1126/science.8191290. PubMed: 8191290.
[5]  Golde TE, Eckman CB, Younkin SG (2000) Biochemical detection of Aβ isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochimica et Biophysica Acta - - Molecular Basis of Disease 1502: 172–187. doi:10.1016/S0925-4439(00)00043-0.
[6]  Scheuner D, Eckman C, Jensen M, Song X, Citron M et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial. Journal of Alzheimer'S Disease - Nature Medicine 2: 864–870.
[7]  Weggen S, Eriksen JL, Das P, Sagi SA, Wang R et al. (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414: 212–216. doi:10.1038/35102591. PubMed: 11700559.
[8]  Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y et al. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155: 853–862. doi:10.1016/S0002-9440(10)65184-X. PubMed: 10487842.
[9]  McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ et al. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46: 860–866. doi:10.1002/1531-8249(199912)46:6. PubMed: 10589538.
[10]  Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 158: 328–337. doi:10.1006/exnr.1999.7085. PubMed: 10415140.
[11]  Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24: 219–224. doi:10.1016/S0166-2236(00)01749-5. PubMed: 11250006.
[12]  Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283: 29639–29643. doi:10.1074/jbc.R800016200. PubMed: 18723507.
[13]  Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 35: 352–358. doi:10.1016/j.nbd.2009.05.024. PubMed: 19523517.
[14]  Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G et al. (2010) The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133: 1328–1341. doi:10.1093/brain/awq065. PubMed: 20403962.
[15]  Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376–388. doi:10.1097/00005072-199904000-00008. PubMed: 10218633.
[16]  De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S et al. (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67: 949–956. doi:10.1001/archneurol.2010.179. PubMed: 20697045.
[17]  Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE et al. (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14: 837–842. doi:10.1038/nm1782. PubMed: 18568035.
[18]  O’Nuallain B, Freir DB, Nicoll AJ, Risse E, Ferguson N et al. (2010) Amyloid -Protein Dimers Rapidly Form Stable Synaptotoxic Protofibrils. Journal of Neuroscience 30: 14411–14419. doi:10.1523/JNEUROSCI.3537-10.2010. PubMed: 20980598.
[19]  Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106: 14745–14750. doi:10.1073/pnas.0905127106. PubMed: 19706468.
[20]  Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W et al. (2010) Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J 29: 3408–3420. doi:10.1038/emboj.2010.211. PubMed: 20818335.
[21]  Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A et al. (2012) Structural basis for increased toxicity of pathological aβ42:aβ40 ratios in Alzheimer disease. J Biol Chem 287: 5650–5660. doi:10.1074/jbc.M111.264473. PubMed: 22157754.
[22]  Bitan G, Vollers SS, Teplow DB (2003) Elucidation of primary structure elements controlling early amyloid beta-protein oligomerization. J Biol Chem 278: 34882–34889. doi:10.1074/jbc.M300825200. PubMed: 12840029.
[23]  Murray MM, Bernstein SL, Nyugen V, Condron MM, Teplow DB et al. (2009) Amyloid beta protein: Abeta40 inhibits Abeta42 oligomerization. J Am Chem Soc 131: 6316–6317. doi:10.1021/ja8092604. PubMed: 19385598.
[24]  Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM et al. (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem 1: 326–331. doi:10.1038/nchem.247. PubMed: 20703363.
[25]  Bitan G, Lomakin A, Teplow DB (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276: 35176–35184. doi:10.1074/jbc.M102223200. PubMed: 11441003.
[26]  Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB et al. (2003) Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100: 330–335. doi:10.1073/pnas.222681699. PubMed: 12506200.
[27]  Ding H, Wong PT, Lee EL, Gafni A, Steel DG (2009) Determination of the oligomer size of amyloidogenic protein beta-amyloid(1-40) by single-molecule spectroscopy. Biophys J 97: 912–921. doi:10.1016/j.bpj.2009.05.035. PubMed: 19651050.
[28]  Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR et al. (2010) N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem 115: 1520–1529. doi:10.1111/j.1471-4159.2010.07058.x. PubMed: 20950339.
[29]  De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ et al. (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282: 11590–11601. doi:10.1074/jbc.M607483200. PubMed: 17308309.
[30]  Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP et al. (2000) beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275: 5626–5632. doi:10.1074/jbc.275.8.5626. PubMed: 10681545.
[31]  Simakova O, Arispe NJ (2007) The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. Membrane binding is required for Abeta toxicity. Journal of Neuroscience?: the Official Journal of the Society for Neuroscience 27: 13719–13729. doi:10.1523/JNEUROSCI.3006-07.2007.
[32]  Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90: 567–571. doi:10.1073/pnas.90.2.567. PubMed: 8380642.
[33]  Kawahara M, Arispe N, Kuroda Y, Rojas E (1997) Alzheimer’s disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J 73: 67–75. doi:10.1016/S0006-3495(97)78048-2. PubMed: 9199772.
[34]  Wong PT, Schauerte JA, Wisser KC, Ding H, Lee EL et al. (2009) Amyloid-beta membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity. J Mol Biol 386: 81–96. doi:10.1016/j.jmb.2008.11.060. PubMed: 19111557.
[35]  Schauerte JA, Wong PT, Wisser KC, Ding H, Steel DG et al. (2010) Simultaneous single-molecule fluorescence and conductivity studies reveal distinct classes of Abeta species on lipid bilayers. Biochemistry 49: 3031–3039. doi:10.1021/bi901444w. PubMed: 20201586.
[36]  Johnson RD, Schauerte JA, Wisser KC, Gafni A, Steel DG (2011) Direct Observation of Single Amyloid-β(1-40) Oligomers on Live Cells: Binding and Growth at Physiological Concentrations. PLOS ONE 6: e23970. doi:10.1371/journal.pone.0023970. PubMed: 21901146.
[37]  Ding H, Schauerte JA, Steel DG, Gafni A (2012) β-Amyloid (1-40) Peptide Interactions with Supported Phospholipid Membranes: A Single-Molecule Study. Biophys J 103: 1500–1509. doi:10.1016/j.bpj.2012.08.051. PubMed: 23062342.
[38]  Johnson RD, Schauerte JA, Chang C-C, Wisser KC, Althaus JC et al. (2013) Single-Molecule Imaging Reveals Aβ42:Aβ40 Ratio-Dependent Oligomer Growth on Neuronal Processes. Biophys J 104: 894–903. doi:10.1016/j.bpj.2012.12.051. PubMed: 23442968.
[39]  Narayan P, Ganzinger KA, McColl J, Weimann L, Meehan S et al. (2013) Single Molecule Characterization of the Interactions between Amyloid-β Peptides and the Membranes of Hippocampal Cells. J Am Chem Soc, 135: 1491–8. PubMed: 23339742.
[40]  Nag S, Chen J, Irudayaraj J, Maiti S (2010) Measurement of the attachment and assembly of small amyloid-β oligomers on live cell membranes at physiological concentrations using single-molecule tools. Biophys J 99: 1969–1975. doi:10.1016/j.bpj.2010.07.020. PubMed: 20858443.
[41]  Fagan AM, Mintun MA, Mach RH, Lee S-Y, Dence CS et al. (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59: 512–519. doi:10.1002/ana.20730. PubMed: 16372280.
[42]  Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC et al. (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64: 343–349. doi:10.1001/archneur.64.3.noc60123. PubMed: 17210801.
[43]  Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT et al. (2011) Dynamic Analysis of Amyloid -Protein in Behaving Mice Reveals Opposing Changes in ISF versus Parenchymal A during Age-Related Plaque Formation. Journal of Neuroscience 31: 15861–15869. doi:10.1523/JNEUROSCI.3272-11.2011. PubMed: 22049429.
[44]  Bateman DA, McLaurin J, Chakrabartty A (2007) Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding. BMC Neurosci 8: 29. doi:10.1186/1471-2202-8-S1-P29. PubMed: 17475015.
[45]  Chafekar SM, Baas F, Scheper W (2008) Oligomer-specific Abeta toxicity in cell models is mediated by selective uptake. Biochim Biophys Acta 1782: 523–531. doi:10.1016/j.bbadis.2008.06.003. PubMed: 18602001.
[46]  Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE et al. (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177: 2549–2562. doi:10.2353/ajpath.2010.100265. PubMed: 20864679.
[47]  Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS et al. (2010) Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68: 1143–1158. doi:10.1016/j.neuron.2010.11.034. PubMed: 21172615.
[48]  Lakowicz JR (1999) Principles of Fluorescence Spectroscopy 2nd Ed. Kluwer Academic/ Plenum Publishers, New York.
[49]  Ishii Y, Yoshida T, Funatsu T, Wazawa T, Yanagida T (1999) Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chemical Physics 247: 163–173. doi:10.1016/S0301-0104(99)00174-3.
[50]  Wang R, Wang B, He W, Zheng H (2006) Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology. J Biol Chem 281: 15330–15336. doi:10.1074/jbc.M512574200. PubMed: 16574645.
[51]  Kim J, Onstead L, Randle S, Price R, Smithson L et al. (2007) Abeta40 inhibits amyloid deposition in vivo. J Neurosci 27: 627–633. doi:10.1523/JNEUROSCI.4849-06.2007. PubMed: 17234594.
[52]  Yan Y, Wang C (2007) Abeta40 protects non-toxic Abeta42 monomer from aggregation. J Mol Biol 369: 909–916. doi:10.1016/j.jmb.2007.04.014. PubMed: 17481654.
[53]  Viet MH, Li MS (2012) Amyloid peptide Aβ40 inhibits aggregation of Aβ42: evidence from molecular dynamics simulations. J Chem Phys 136: 245105. doi:10.1063/1.4730410. PubMed: 22755606.
[54]  Jan A, Gokce O, Luthi-Carter R, Lashuel HA (2008) The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem 283: 28176–28189. doi:10.1074/jbc.M803159200. PubMed: 18694930.
[55]  Ungureanu A-A, Benilova I, Van Bael MJ, Van Haesendonck C, Bartic C (2012) AFM investigation of the aggregation behavior of Alzheimer’s disease Aβ peptides. Nanotechnology (IEEE-NANO), 12th IEEE Conference, Birmingham, UK, August 20-23, 2012.
[56]  Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15: 349–357. doi:10.1038/nn.3028. PubMed: 22286176.
[57]  Davis CH, Berkowitz ML (2010) A molecular dynamics study of the early stages of amyloid-beta(1-42) oligomerization: the role of lipid membranes. Proteins 78: 2533–2545. PubMed: 20602359.
[58]  Omtri RS, Davidson MW, Arumugam B, Poduslo JF, Kandimalla KK (2012) Differences in the Cellular Uptake and Intracellular Itineraries of Amyloid Beta Proteins 40 and 42: Ramifications for the Alzheimer’s Drug Discovery. Molecular Pharmaceutics 9: 1887–1897. doi:10.1021/mp200530q.
[59]  Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K et al. (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38: 643–648. doi:10.1002/ana.410380413. PubMed: 7574461.
[60]  Fagan AM, Head D, Shah AR, Marcus D, Mintun M et al. (2009) Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Annals of Neurology 65: 176–183. doi:10.1002/ana.21559. PubMed: 19260027.
[61]  Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS et al. (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65: 403–413. doi:10.1002/ana.21610. PubMed: 19296504.
[62]  Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T et al. (1998) Combination assay of CSF tau, A beta 1-40 and A beta 1-42(43) as a biochemical marker of Alzheimer’s disease. J Neurol Sci 158: 134–140. doi:10.1016/S0022-510X(98)00122-1. PubMed: 9702683.
[63]  Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM et al. (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. Journal of Neuroscience?: the Official Journal of the Society for Neuroscience 31: 6627–6638. doi:10.1523/JNEUROSCI.0203-11.2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133