全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ICOS Regulates the Generation and Function of Human CD4+ Treg in a CTLA-4 Dependent Manner

DOI: 10.1371/journal.pone.0082203

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their na?ve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4.

References

[1]  Beier KC, Hutloff A, Dittrich AM, Heuck C, Rauch A et al. (2000) Induction, binding specificity and function of human ICOS. Eur J Immunol 30: 3707-3717. doi:10.1002/1521-4141(200012)30:12. PubMed: 11169414.
[2]  Linterman MA, Rigby RJ, Wong R, Silva D, Withers D et al. (2009) Roquin Differentiates the Specialized Functions of Duplicated T Cell Costimulatory Receptor Genes Cd28 and Icos. Immunity 30: 228-241. doi:10.1016/j.immuni.2008.12.015. PubMed: 19217324.
[3]  Watanabe M, Hara Y, Tanabe K, Toma H, Abe R (2005) A distinct role for ICOS-mediated co-stimulatory signaling in CD4+ and CD8+ T cell subsets. Int Immunol 17: 269-278. doi:10.1093/intimm/dxh206. PubMed: 15668466.
[4]  Bertram EM, Tafuri A, Shahinian A, Chan VS, Hunziker L et al. (2002) Role of ICOS versus CD28 in antiviral immunity. Eur J Immunol 32: 3376-3385. doi:10.1002/1521-4141(200212)32:12. PubMed: 12432568.
[5]  Currie AJ, Prosser A, McDonnell A, Cleaver AL, Robinson BW et al. (2009) Dual Control of Antitumor CD8 T Cells through the Programmed Death-1/Programmed Death-Ligand 1 Pathway and Immunosuppressive CD4 T Cells: Regulation and Counterregulation. J Immunol 183: 7898-7908. doi:10.4049/jimmunol.0901060. PubMed: 20007574.
[6]  Harada H, Salama AD, Sho M, Izawa A, Sandner SE et al. (2003) The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. J Clin Invest 112: 234-243. doi:10.1172/JCI200317008. PubMed: 12865411.
[7]  Taylor PA, Panoskaltsis-Mortari A, Freeman GJ, Sharpe AH, Noelle RJ et al. (2005) Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood 105: 3372-3380. doi:10.1182/blood-2004-10-3869. PubMed: 15618467.
[8]  Maeda S, Fujimoto M, Matsushita T, Hamaguchi Y, Takehara K et al. (2011) Inducible costimulator (ICOS) and ICOS ligand signaling has pivotal roles in skin wound healing via cytokine production. Am J Pathol 179: 2360-2369. doi:10.1016/j.ajpath.2011.07.048. PubMed: 21925472.
[9]  Hodgson R, Christiansen D, Ziolkowski A, Mouhtouris E, Simeonovic CJ et al. (2011) Prolonged xenograft survival induced by inducible costimulator-Ig is associated with increased forkhead box p3+ cells. Transplantation 91: 1090-1097. doi:10.1097/TP.0b013e31821774e0. PubMed: 21544030.
[10]  Dong C, Juedes AE, Temann UA, Shresta S, Allison JP et al. (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409: 97-101. doi:10.1038/35051100. PubMed: 11343121.
[11]  Moore TV, Clay BS, Cannon JL, Histed A, Shilling RA et al. (2011) Inducible costimulator controls migration of T cells to the lungs via down-regulation of CCR7 and CD62L. Am J Respir Cell Mol Biol 45: 843-850. doi:10.1165/rcmb.2010-0466OC. PubMed: 21421907.
[12]  Clay BS, Shilling RA, Bandukwala HS, Moore TV, Cannon JL et al. (2009) Inducible costimulator expression regulates the magnitude of Th2-mediated airway inflammation by regulating the number of Th2 cells. PLOS ONE 4: e7525. doi:10.1371/journal.pone.0007525. PubMed: 19888475.
[13]  McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA et al. (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165: 5035-5040. PubMed: 11046032.
[14]  Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC et al. (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10: 167-175. doi:10.1038/ni.1690. PubMed: 19098919.
[15]  Galicia G, Kasran A, Uyttenhove C, De Swert K, Van Snick J et al. (2009) ICOS Deficiency Results in Exacerbated IL-17 Mediated Experimental Autoimmune Encephalomyelitis. J Clin Immunol 29: 426-433. doi:10.1007/s10875-009-9287-7. PubMed: 19291374.
[16]  Smith KM, Brewer JM, Webb P, Coyle AJ, Gutierrez-Ramos C et al. (2003) Inducible costimulatory molecule-B7-related protein 1 interactions are important for the clonal expansion and B cell helper functions of naive, Th1, and Th2 T cells. J Immunol 170: 2310-2315. PubMed: 12594252.
[17]  Yong PF, Salzer U, Grimbacher B (2009) The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol Rev 229: 101-113. doi:10.1111/j.1600-065X.2009.00764.x. PubMed: 19426217.
[18]  Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G et al. (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207: 1871-1878. doi:10.1084/jem.20100209. PubMed: 20679400.
[19]  Gomez de Agüero M, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T et al. (2012) Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. J Clin Invest 122: 1700-1711. doi:10.1172/JCI59725. PubMed: 22523067.
[20]  Lischke T, Hegemann A, Gurka S, Vu Van D, Burmeister Y et al. (2012) Comprehensive Analysis of CD4+ T Cells in the Decision between Tolerance and Immunity In Vivo Reveals a Pivotal Role for ICOS. J Immunol 189: 234-244. doi:10.4049/jimmunol.1102034. PubMed: 22661090.
[21]  Chen Y, Shen S, Gorentla BK, Gao J, Zhong XP (2012) Murine Regulatory T Cells Contain Hyperproliferative and Death-Prone Subsets with Differential ICOS Expression. Journal of Immunology 188: 1698-1707. doi:10.4049/jimmunol.1102448.
[22]  Prevot N, Briet C, Lassmann H, Tardivel I, Roy E et al. (2010) Abrogation of icos/icosl costimulation in nod mice results in autoimmune deviation towards the neuromuscular system. Eur J Immunol 40: 2267-2276. doi:10.1002/eji.201040416. PubMed: 20544729.
[23]  Burmeister Y, Lischke T, Dahler AC, Mages HW, Lam KP et al. (2008) ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol 180: 774-782. PubMed: 18178815.
[24]  Kornete M, Sgouroudis E, Piccirillo CA (2012) ICOS-Dependent Homeostasis and Function of Foxp3+ Regulatory T Cells in Islets of Nonobese Diabetic Mice. J Immunol 188: 1064-1074. doi:10.4049/jimmunol.1101303. PubMed: 22227569.
[25]  Whitehead GS, Wilson RH, Nakano K, Burch LH, Nakano H, et al. (2012) IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. The Journal of Allergy and Clinical Immunology 129: 207-15.e1-5.
[26]  Ito T, Hanabuchi S, Wang YH, Park WR, Arima K et al. (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28: 870-880. doi:10.1016/j.immuni.2008.03.018. PubMed: 18513999.
[27]  Conrad C, Gregorio J, Wang YH, Ito T, Meller S et al. (2012) Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS co-stimulation of Foxp3+ T regulatory cells. Cancer Res 72: 5240-5249. doi:10.1158/0008-5472.CAN-12-2271. PubMed: 22850422.
[28]  Martin-Orozco N, Li Y, Wang Y, Liu S, Hwu P et al. (2010) Melanoma Cells Express ICOS Ligand to Promote the Activation and Expansion of T-Regulatory Cells. Cancer Res 70: 9581-9590. doi:10.1158/0008-5472.CAN-10-1379. PubMed: 21098714.
[29]  Strauss L, Bergmann C, Szczepanski MJ, Lang S, Kirkwood JM et al. (2008) Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180: 2967-2980. PubMed: 18292519.
[30]  Tuettenberg A, Huter E, Hubo M, Horn J, Knop J et al. (2009) The Role of ICOS in Directing T Cell Responses: ICOS-Dependent Induction of T Cell Anergy by Tolerogenic Dendritic Cells. J Immunol 182: 3349-3356. doi:10.4049/jimmunol.0802733. PubMed: 19265111.
[31]  Uchida K, Kusuda T, Koyabu M, Miyoshi H, Fukata N, et al. (2012) Regulatory T cells in type 1 autoimmune pancreatitis. International Journal of Rheumatology 2012: 795026.
[32]  Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229: 12-26. doi:10.1111/j.1600-065X.2009.00770.x. PubMed: 19426212.
[33]  Tu W, Lau YL, Zheng J, Liu Y, Chan PL et al. (2008) Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood 112: 2554-2562. doi:10.1182/blood-2008-04-152041. PubMed: 18599794.
[34]  Zheng J, Liu Y, Qin G, Chan PL, Mao H et al. (2009) Efficient induction and expansion of human alloantigen-specific CD8 regulatory T cells from naive precursors by CD40-activated B cells. J Immunol 183: 3742-3750. doi:10.4049/jimmunol.0901329. PubMed: 19684082.
[35]  Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N et al. (2009) Impaired CD4 and CD8 Effector Function and Decreased Memory T Cell Populations in ICOS-Deficient Patients. J Immunol 182: 5515-5527. doi:10.4049/jimmunol.0803256. PubMed: 19380800.
[36]  Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y et al. (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685-689. doi:10.1038/nature05673. PubMed: 17377532.
[37]  Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1: 220-228. doi:10.1038/35105024. PubMed: 11905831.
[38]  Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3: 611-618. doi:10.1038/ni0702-611. PubMed: 12087419.
[39]  Read S, Malmstr?m V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192: 295-302. doi:10.1084/jem.192.2.295. PubMed: 10899916.
[40]  Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J et al. (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192: 303-310. doi:10.1084/jem.192.2.303. PubMed: 10899917.
[41]  Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271-275. doi:10.1126/science.1160062. PubMed: 18845758.
[42]  Wu J, Tang JL, Wu SJ, Lio HY, Yang YC (2009) Functional polymorphism of CTLA-4 and ICOS genes in allogeneic hematopoietic stem cell transplantation. Clin Chim Acta 403: 229-233. doi:10.1016/j.cca.2009.03.037. PubMed: 19332044.
[43]  Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF et al. (2009) Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-{gamma} levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci U S A 106: 2729-2734. doi:10.1073/pnas.0813175106. PubMed: 19202079.
[44]  Liakou CI, Kamat A, Tang DN, Chen H, Sun J et al. (2008) CTLA-4 blockade increases IFN{gamma}-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci U S A 105: 14987-14992. doi:10.1073/pnas.0806075105. PubMed: 18818309.
[45]  Chuang E, Alegre ML, Duckett CS, Noel PJ, Vander Heiden MG et al. (1997) Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J Immunol 159: 144-151. PubMed: 9200449.
[46]  Gigoux M, Shang J, Pak Y, Xu M, Choe J et al. (2009) Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 106: 20371-20376. doi:10.1073/pnas.0911573106. PubMed: 19915142.
[47]  Koguchi Y, Thauland TJ, Slifka MK, Parker DC (2007) Preformed CD40 ligand exists in secretory lysosomes in effector and memory CD4+ T cells and is quickly expressed on the cell surface in an antigen-specific manner. Blood 110: 2520-2527. doi:10.1182/blood-2007-03-081299. PubMed: 17595332.
[48]  Mead KI, Zheng Y, Manzotti CN, Perry LC, Liu MK et al. (2005) Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J Immunol 174: 4803-4811. PubMed: 15814706.
[49]  Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD et al. (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126: 375-387. doi:10.1016/j.cell.2006.05.042. PubMed: 16873067.
[50]  Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA et al. (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936-940. doi:10.1038/nature05563. PubMed: 17237761.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133