全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Preference and Prey Switching in a Generalist Predator Attacking Local and Invasive Alien Pests

DOI: 10.1371/journal.pone.0082231

Full-Text   Cite this paper   Add to My Lib

Abstract:

Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T.?absoluta eggs and B. tabaci nymphs, but T.?absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M.?pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B.?tabaci and T.?absoluta, which very frequently co-occur on tomato.

References

[1]  Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25: 443-466. doi:10.1146/annurev.es.25.110194.002303.
[2]  Abrams PA, Matsuda H (1996) Positive indirect effects between prey species that share predators. Ecology 77: 610-616. doi:10.2307/2265634.
[3]  Tack AJM, Gripenberg S, Roslin T (2011) Can we predict indirect interactions from quantitative food webs? - an experimental approach. J Anim Ecol 80: 108-118. doi:10.1111/j.1365-2656.2010.01744.x. PubMed: 20796204.
[4]  Bompard A, Jaworski CC, Bearez P, Desneux N (2013) Sharing a predator: can an invasive alien pest affect the predation on a local pest? Popul Ecol 55: 433-440. doi:10.1007/s10144-013-0371-8.
[5]  Mouttet R, Bearez P, Thomas C, Desneux N (2011) Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions. PLOS ONE 6: e18840. doi:10.1371/journal.pone.0018840. PubMed: 21611161.
[6]  Mouttet R, Kaplan I, Bearez P, Amiens-Desneux E, Desneux N (2013) Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia. doi:10.1007/s00442-013-2716-6. PubMed: 23851986.
[7]  Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47: 561-594. doi:10.1146/annurev.ento.47.091201.145240. PubMed: 11729085.
[8]  Desneux N, O’Neil RJ, Yoo HJS (2006) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environ Entomol 35: 1342-1349. Available online at: doi:10.1603/0046-225X(2006)35[1342:SOPGO?T]2.0.CO; 2.
[9]  Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487: 362-365. doi:10.1038/nature11153. PubMed: 22722864.
[10]  Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25: 495-520. doi:10.1146/annurev.es.25.110194.002431.
[11]  Chaneton EJ, Bonsall MB (2000) Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88: 380-394. doi:10.1034/j.1600-0706.2000.880217.x.
[12]  Eubanks MD, Denno RF (2000) Health food versus fast food: the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecol Entomol 25: 140-146. doi:10.1046/j.1365-2311.2000.00243.x.
[13]  Fantinou A, Perdikis D, Labropoulos P, Maselou D (2009) Preference and consumption of Macrolophus pygmaeus preying on mixed instar assemblages of Myzus persicae. Biol Control 51: 76-80. doi:10.1016/j.biocontrol.2009.06.006.
[14]  Venzon M, Janssen A, Sabelis MW (2002) Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97: 116-124. doi:10.1034/j.1600-0706.2002.970112.x.
[15]  Desneux N, O’Neil RJ (2008) Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions. Bull Entomol Res 98: 631-639. doi:10.1017/S0007485308006238. PubMed: 18845007.
[16]  Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37: 141-172. doi:10.1146/annurev.en.37.010192.001041.
[17]  Murdoch WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39: 335-354. doi:10.2307/1942352.
[18]  Oaten A, Murdoch WW (1975) Switching, functional response, and stability in predator-prey systems. Am Nat 109: 299-318. doi:10.1086/282999.
[19]  Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17: 170-176. doi:10.1016/S0169-5347(02)02495-3.
[20]  Li Y, Ke Z, Wang S, Smith GR, Liu X (2011) An exotic species is the favorite prey of a native enemy. PLOS ONE 6: e24299. doi:10.1371/journal.pone.0024299. PubMed: 21915306.
[21]  Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and Management of the Soybean Aphid in North America. Annu Rev Entomol 56: 375-399. doi:10.1146/annurev-ento-120709-144755. PubMed: 20868277.
[22]  Desneux N, Wajnberg E, Wyckhuys K, Burgio G, Arpaia S et al. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83: 197-215. doi:10.1007/s10340-010-0321-6.
[23]  Desneux N, Luna M, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84: 403-408. doi:10.1007/s10340-011-0398-6.
[24]  Qiu BL, Dang F, Li SJ, Ahmed M, Jin FL et al. (2011) Comparison of biological parameters between the invasive B biotype and a new defined Cv biotype of Bemisia tabaci (Hemiptera: Aleyradidae) in China. J Pest Sci 84: 419-427. doi:10.1007/s10340-011-0367-0.
[25]  McKenzie CL, Bethke JA, Byrne FJ, Chamberlin JR, Dennehy TJ et al. (2012) Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J Econ Entomol 105: 753-766. doi:10.1603/EC11337. PubMed: 22812110.
[26]  Parrella G, Scassillo L, Giorgini M (2012) Evidence for a new genetic variant in the Bemisia tabaci species complex and the prevalence of the biotype Q in southern Italy. J Pest Sci 85: 227-238. doi:10.1007/s10340-012-0417-2.
[27]  Saleh D, Laarif A, Clouet C, Gauthier N (2012) Spatial and host-plant partitioning between coexisting Bemisia tabaci cryptic species in Tunisia. Population Ecol 54: 261-274. doi:10.1007/s10144-012-0303-z.
[28]  Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Protect 20: 709-723. doi:10.1016/S0261-2194(01)00108-9.
[29]  Jiao X, Xie W, Wang S, Wu Q, Zhou L et al. (2012) Host preference and nymph performance of B and Q putative species of Bemisia tabaci on three host plants. J Pest Sci 85: 423-430. doi:10.1007/s10340-012-0441-2.
[30]  Fauvel G, Malausa J, Kaspar B (1987) Laboratory studies on the main biological characteristics of Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 32: 529-543. doi:10.1007/BF02373522.
[31]  Enkegaard A, Brodsgaard HF, Hansen DL (2001) Macrolophus caliginosus: functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. Entomol Exp Appl 101: 81-88. doi:10.1046/j.1570-7458.2001.00893.x.
[32]  Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnò J et al. (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle-East, and their potential use in pest control strategies. J Pest Sci. doi:10.1007/s10340-013-0531-9.
[33]  Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD et al. (2010) Predator-prey na?veté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610-621. doi:10.1111/j.1600-0706.2009.18039.x.
[34]  Perdikis D, Lykouressis D (2000) Effects of various items, host plants, and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biol Control 17: 55-60. doi:10.1006/bcon.1999.0774.
[35]  Perdikis DC, Lykouressis DP (2002) Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomol Exp Appl 102: 261-272. doi:10.1046/j.1570-7458.2002.00947.x.
[36]  Harwood JD, Yoo HJS, Greenstone MH, Rowley DL, O'Neil RJ (2009) Differential impact of adults and nymphs of a generalist predator on an exotic invasive pest demonstrated by molecular gut-content analysis. Biol Invasions 11: 895-903. doi:10.1007/s10530-008-9302-6.
[37]  Urbaneja A, Monton H, Molla O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol 133: 292-296. doi:10.1111/j.1439-0418.2008.01319.x.
[38]  Desneux N, Stary P, Delebecque CJ, Gariepy TD, Barta RJ et al. (2009) Cryptic species of parasitoids attacking the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in Asia: Binodoxys communis Gahan and Binodoxyx koreanus; Stary sp. n. (Hymenoptera: Braconidae: Aphidiinae). Ann Entomol Soc Am 102: 925-936. doi:10.1603/008.102.0603.
[39]  Simmons AM (1999) Nymphal survival and movement of crawlers of Bemisia argentifolii (Homoptera : Aleyrodidae) on leaf surfaces of selected vegetables. Environ Entomol 28: 212-216. PubMed: 11543187.
[40]  Chailleux A, Desneux N, Seguret J, Maignet P, Khanh HDT et al. (2012) Assessing European egg parasitoids as a mean of controlling the invasive south American tomato pinworm Tuta absoluta. PLOS ONE 7: e48068. doi:10.1371/journal.pone.0048068. PubMed: 23144727.
[41]  Manly B (1973) A linear model for frequency-dependent selection by predators. Researches on Population Ecol 14: 137-150. doi:10.1007/BF02518839.
[42]  Manly BFJ (1974) A model for certain types of selection experiments. Biometrics 30: 281-294. doi:10.2307/2529649.
[43]  Lafferty KD, Kuris AM (2002) Trophic strategies, animal diversity and body size. Trends Ecol Evol 17: 507-513. doi:10.1016/S0169-5347(02)02615-0.
[44]  Guershon M, Gerling D (1999) Predatory behavior of Delphastus pusillus in relation to the phenotypic plasticity of Bemisia tabaci nymphs. Entomol Exp Appl 92: 239-248. doi:10.1046/j.1570-7458.1999.00543.x.
[45]  Butler C, O'Neil R (2006) Defensive response of soybean aphid (Hemiptera : Aphididae) to predation by insidious flower bug (Hemiptera : Anthocoridae). Ann Entomol Soc Am 99: 317-320. Available online at: doi:10.1603/0013-8746(2006)099[0317:DROS?AH]2.0.CO; 2.
[46]  Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R et al. (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest, Tuta absoluta. J Pest Sci 86: 533-541. doi:10.1007/s10340-013-0498-6.
[47]  Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96: 439-449. doi:10.1007/BF00317517.
[48]  Lind J, Cresswell W (2005) Determining the fitness consequences of antipredation behavior. Behav Ecol 16: 945-956. doi:10.1093/beheco/ari075.
[49]  Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE (2009) Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160: 387-398. doi:10.1007/s00442-009-1289-x. PubMed: 19219460.
[50]  Molla O, Alonso-Valiente M, Biondi A, Urbaneja A (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biol_Control. In press.
[51]  Johnson F, Short D, Castner J (1997) Sweetpotato/silverleaf whitefly life stages and damage. Entomology and Nematology Department SP 90. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Available: http://edis.ifas.ufl.edu/IN004.
[52]  Cabello T, Gallego J, Vila E, Soler A, del Pino M et al. (2009) Biological control of the South American tomato pinworm, Tuta absoluta (Lep.: Gelechiidae), with releases of Trichogramma achaeae (Hym.: Trichogrammatidae) in tomato greenhouses of Spain. IOBC/WPRS Bul 49: 225-230.
[53]  Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer resource dynamics. Princeton: Princeton University Press.
[54]  Kimbrell T, Holt R (2005) Individual behaviour, space and predator evolution promote persistence in a two-patch system with predator switching. Evol Ecol Res 7: 53-71.
[55]  Jaworski C, Bompard A, Béarez P, Desneux N (2011) Potential for apparent competition between endemic and invasive pests on tomato. 9ème Conférence Internationale sur les Ravageurs en Agriculture, 26 - 27 october 2011 – Montpellier SupAgro, France.
[56]  Kuusk AK, Ekbom B (2010) Lycosid spiders and alternative food: feeding behavior and implications for biological control. Biol Control 55: 20-26. doi:10.1016/j.biocontrol.2010.06.009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133