Maternal immune activation can induce neuropsychiatric disorders, such as autism and schizophrenia. Previous investigations by our group have shown that prenatal treatment of rats on gestation day 9.5 with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally), which mimics infections by gram-negative bacteria, induced autism-like behavior in male rats, including impaired communication and socialization and induced repetitive/restricted behavior. However, the behavior of female rats was unchanged. Little is known about how LPS-induced changes in the pregnant dam subsequently affect the developing fetus and the fetal immune system. The present study evaluated the hypothalamic-pituitary-adrenal (HPA) axis activity, the placental tissue and the reproductive performance of pregnant Wistar rats exposed to LPS. In the adult offspring, we evaluated the HPA axis and pro-inflammatory cytokine levels with or without a LPS challenge. LPS exposure increased maternal serum corticosterone levels, injured placental tissue and led to higher post-implantation loss, resulting in fewer live fetuses. The HPA axis was not affected in adult offspring. However, prenatal LPS exposure increased IL-1β serum levels, revealing that prenatal LPS exposure modified the immune response to a LPS challenge in adulthood. Increased IL-1β levels have been reported in several autistic patients. Together with our previous studies, our model induced autistic-like behavioral and immune disturbances in childhood and adulthood, indicating that it is a robust rat model of autism.
References
[1]
Meyer U, Feldon J, Fatemi SH (2009) In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 33: 1061-1079. PubMed: 19442688.
[2]
Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48: 903-917. doi:10.1016/j.neuropharm.2004.12.023. PubMed: 15829260.
[3]
Boksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24: 881-897. doi:10.1016/j.bbi.2010.03.005. PubMed: 20230889.
[4]
Atladóttir HO, Thorsen P, ?stergaard L, Schendel DE, Lemcke S et al. (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40: 1423-1430. doi:10.1007/s10803-010-1006-y. PubMed: 20414802.
[5]
Meyer U, Feldon J, Dammann O (2011) Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res 69: 26R-33R. doi:10.1203/PDR.0b013e318212c196. PubMed: 21289540.
[6]
MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 217: 47-54. doi:10.1016/j.bbr.2010.10.005. PubMed: 20937326.
[7]
Romero E, Guaza C, Castellano B, Borrell J (2010) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15: 372-383. doi:10.1038/mp.2008.44. PubMed: 18414405.
[8]
Kirsten TB, Taricano M, Maiorka PC, Palermo-Neto J, Bernardi MM (2010) Prenatal lipopolysaccharide reduces social behavior in male offspring. Neuroimmunomodulation 17: 240-251. doi:10.1159/000290040. PubMed: 20203530.
[9]
Kirsten TB, Chaves-Kirsten GP, Chaible LM, Silva AC, Martins DO et al. (2012) Hypoactivity of the central dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to lipopolysaccharide. J Neurosci Res 90: 1903-1912. doi:10.1002/jnr.23089. PubMed: 22714803.
[10]
Kirsten TB, Taricano M, Flório JC, Palermo-Neto J, Bernardi MM (2010) Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav Brain Res 211: 77-82. doi:10.1016/j.bbr.2010.03.009. PubMed: 20226214.
[11]
Kirsten TB, de Oliveira BP, de Oliveira AP, Kieling K, de Lima WT et al. (2011) Single early prenatal lipopolysaccharide exposure prevents subsequent airway inflammation response in an experimental model of asthma. Life Sci 89: 15-19. doi:10.1016/j.lfs.2011.04.023. PubMed: 21620873.
[12]
Sutanto W, De Kloet ER (1987) Species-specificity of corticosteroid receptors in hamster and rat brains. Endocrinology 121: 1405-1411. doi:10.1210/endo-121-4-1405. PubMed: 3653033.
[13]
McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886: 172-189. doi:10.1016/S0006-8993(00)02950-4. PubMed: 11119695.
[14]
de Lima CB, Sakai M, Latorre AO, Moreau RL, Palermo-Neto J (2010) Effects of different doses and schedules of diazepam treatment on lymphocyte parameters in rats. Int Immunopharmacol 10: 1335-1343. doi:10.1016/j.intimp.2010.08.015. PubMed: 20846531.
[15]
Lenczowski MJ, Van Dam AM, Poole S, Larrick JW, Tilders FJ (1997) Role of circulating endotoxin and interleukin-6 in the ACTH and corticosterone response to intraperitoneal LPS. Am J Physiol 273: R1870-R1877. PubMed: 9435639.
[16]
Ashdown H, Dumont Y, Ng M, Poole S, Boksa P et al. (2006) The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11: 47-55. doi:10.1038/sj.mp.4001748. PubMed: 16189509.
[17]
Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH (2001) Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 47: 27-36. doi:10.1016/S0920-9964(00)00032-3. PubMed: 11163542.
[18]
Vismari L, Alves GJ, Muscará MN, Palermo-Neto J (2012) A possible role to nitric oxide in the anti-inflammatory effects of amitriptyline. Immunopharmacol Immunotoxicol 34: 578-585. doi:10.3109/08923973.2011.638305. PubMed: 22208160.
[19]
Xu DX, Chen YH, Wang H, Zhao L, Wang JP et al. (2006) Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice. Toxicol Lett 163: 20-29. doi:10.1016/j.toxlet.2005.09.009. PubMed: 16263228.
[20]
Zhao L, Chen YH, Wang H, Ji YL, Ning H et al. (2008) Reactive oxygen species contribute to lipopolysaccharide-induced teratogenesis in mice. Toxicol Sci 103: 149-157. PubMed: 18281254.
[21]
Dey SK, Lim H (2006) Implantation. In: JD Neill. Knobil and Neill’s Physiology of Reproduction. 3 ed. San Diego: Elsevier. pp. 147-188.
[22]
Burton GJ, Kaufmann P, Huppertz B (2006) Anatomy and Genesis of the Placenta. In: JD Neill. Knobil and Neill’s Physiology of Reproduction. 3 ed. San Diego: Elsevier. pp. 189-243.
[23]
Richards IS (2008) Biotransformation. In: IS Richards. Principles and practice of toxicology in public health. London: Jones and Bartlett. pp. 139-154.
[24]
Hall GA (1974) An investigation into the mechanism of placental damage in rats inoculated with Salmonella dublin. Am J Pathol 77: 299-312. PubMed: 4447132.
[25]
Levario-Carrillo M, Olave ME, Corral DC, Alderete JG, Gagioti SM et al. (2004) Placental morphology of rats prenatally exposed to methyl parathion. Exp Toxicol Pathol 55: 489-496. doi:10.1078/0940-2993-00346. PubMed: 15384254.
[26]
Mor G, Abrahams VM (2003) Potential role of macrophages as immunoregulators of pregnancy. Reprod Biol Endocrinol 1: 119. doi:10.1186/1477-7827-1-119. PubMed: 14651752.
[27]
Gayle DA, Beloosesky R, Desai M, Amidi F, Nu?ez SE et al. (2004) Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. Am J Physiol Regul Integr Comp Physiol 286: R1024-R1029. doi:10.1152/ajpregu.00664.2003. PubMed: 14988088.
[28]
Casey ML, Cox SM, Beutler B, Milewich L, MacDonald PC (1989) Cachectin/tumor necrosis factor-alpha formation in human decidua. Potential role of cytokines in infection-induced preterm labor. Journal of Clinical Investigation 83: 430-436. doi:10.1172/JCI113901.
[29]
Silen ML, Firpo A, Morgello S, Lowry SF, Francus T (1989) Interleukin-1 alpha and tumor necrosis factor alpha cause placental injury in the rat. Am J Pathol 135: 239-244. PubMed: 2675613.
[30]
Bell MJ, Hallenbeck JM, Gallo V (2004) Determining the fetal inflammatory response in an experimental model of intrauterine inflammation in rats. Pediatr Res 56: 541-546. doi:10.1203/01.PDR.0000139407.89883.6B. PubMed: 15295096.
[31]
Kwon O, Lee E, Moon TC, Jung H, Lin CX et al. (2002) Expression of cyclooxygenase-2 and pro-inflammatory cytokines induced by 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) in human mast cells requires NF-kappa B activation. Biol Pharm Bull 25: 1165-1168. PubMed: 12230110.
[32]
Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11: 343-353. doi:10.1016/j.siny.2006.04.002. PubMed: 16793357.
[33]
Dunn AJ (2006) Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res 6: 52-68. doi:10.1016/j.cnr.2006.04.002. PubMed: 18079991.
[34]
Kirsten TB, Chaves GP, Taricano M, Martins DO, Flório JC et al. (2011) Prenatal LPS exposure reduces olfactory perception in neonatal and adult rats. Physiol Behav 104: 417-422. PubMed: 21570993.
[35]
Reul JM, Stec I, Wiegers GJ, Labeur MS, Linthorst AC et al. (1994) Prenatal immune challenge alters the hypothalamic-pituitary-adrenocortical axis in adult rats. J Clin Invest 93: 2600-2607. doi:10.1172/JCI117272. PubMed: 8200998.
[36]
Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG (2000) Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 47: 64-72. doi:10.1203/00006450-200001000-00013. PubMed: 10625084.
[37]
Coyle P, Tran N, Fung JN, Summers BL, Rofe AM (2009) Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res 197: 210-218. doi:10.1016/j.bbr.2008.08.022. PubMed: 18793679.
[38]
Giovanoli S, Engler H, Engler A, Richetto J, Voget M et al. (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339: 1095-1099. doi:10.1126/science.1228261. PubMed: 23449593.
[39]
Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the "two hit hypothesis". J Psychiatr Res 33: 543-548. doi:10.1016/S0022-3956(99)00039-4. PubMed: 10628531.
[40]
Maynard TM, Sikich L, Lieberman JA, LaMantia AS (2001) Neural development, cell-cell signaling, and the "two-hit" hypothesis of schizophrenia. Schizophr Bull 27: 457-476. doi:10.1093/oxfordjournals.schbul.a006887. PubMed: 11596847.
[41]
Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V et al. (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207: 111-116. doi:10.1016/j.jneuroim.2008.12.002. PubMed: 19157572.
[42]
Jyonouchi H, Sun S, Le H (2001) Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 120: 170-179. doi:10.1016/S0165-5728(01)00421-0. PubMed: 11694332.
[43]
Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M (2002) Activation of the inflammatory response system in autism. Neuropsychobiology 45: 1-6. doi:10.1159/000048665. PubMed: 11803234.
[44]
Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12: 123-137. doi:10.1016/S0149-7634(88)80004-6. PubMed: 3050629.
[45]
Kent S, Bluthé RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13: 24-28. doi:10.1016/0165-6147(92)90012-U. PubMed: 1542935.