全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

How Random Is Social Behaviour? Disentangling Social Complexity through the Study of a Wild House Mouse Population

DOI: 10.1371/journal.pcbi.1002786

Full-Text   Cite this paper   Add to My Lib

Abstract:

Out of all the complex phenomena displayed in the behaviour of animal groups, many are thought to be emergent properties of rather simple decisions at the individual level. Some of these phenomena may also be explained by random processes only. Here we investigate to what extent the interaction dynamics of a population of wild house mice (Mus domesticus) in their natural environment can be explained by a simple stochastic model. We first introduce the notion of perceptual landscape, a novel tool used here to describe the utilisation of space by the mouse colony based on the sampling of individuals in discrete locations. We then implement the behavioural assumptions of the perceptual landscape in a multi-agent simulation to verify their accuracy in the reproduction of observed social patterns. We find that many high-level features – with the exception of territoriality – of our behavioural dataset can be accounted for at the population level through the use of this simplified representation. Our findings underline the potential importance of random factors in the apparent complexity of the mice's social structure. These results resonate in the general context of adaptive behaviour versus elementary environmental interactions.

References

[1]  Simon H (1969) The Sciences of the Artificial. 1st edition. Cambridge, MA: MIT Press.
[2]  Sumpter D (2010) Collective animal behavior. Princeton, NJ: Princeton University Press.
[3]  Camazine S (2003) Self-organization in biological systems. Princeton, NJ: University Press.
[4]  Solé R, Bascompte J (2006) Self-organization in complex ecosystems, volume 42. Princeton, NJ: Princeton University Press.
[5]  Couzin I, Krause J (2003) Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior 32: 1–75. doi: 10.1016/s0065-3454(03)01001-5
[6]  Bartumeus F (2009) Behavioral intermittence, lévy patterns, and randomness in animal movement. Oikos 118: 488–494. doi: 10.1111/j.1600-0706.2008.17313.x
[7]  Ebeling W, Schweitzer F (2003) Self-organization, active brownian dynamics, and biological applications. Nova Acta Leopoldina 88: 169–188.
[8]  Schweitzer F (2003) Brownian agents and active particles: collective dynamics in the natural and social sciences. Berlin: Springer Verlag.
[9]  Garcia V, Birbaumer M, Schweitzer F (2011) Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution. The European Physical Journal BCondensed Matter and Complex Systems 82: 235–244. doi: 10.1140/epjb/e2011-20425-2
[10]  Mach R, Schweitzer F (2007) Modeling vortex swarming in daphnia. Bulletin of mathematical biology 69: 539–562. doi: 10.1007/s11538-006-9135-3
[11]  Schweitzer F, Lao K, Family F (1997) Active random walkers simulate trunk trail formation by ants. BioSystems 41: 153–166. doi: 10.1016/s0303-2647(96)01670-x
[12]  Wynne C (2001) Animal Cognition: The mental lives of animals. Basingstoke : Palgrave Macmillan.
[13]  De Waal F, Tyack P, editors (2003) Animal social complexity: Intelligence, culture, and individualized societies. Cambridge, MA: Harvard University Press.
[14]  Latham N (2004) From house mouse to mouse house: the behavioural biology of free-living Mus musculus and its implications in the laboratory. Applied Animal Behaviour Science 86: 261–289. doi: 10.1016/j.applanim.2004.02.006
[15]  Manser A, Lindholm A, K?nig B, Bagheri H (2011) Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution 65: 2435–2447. doi: 10.1111/j.1558-5646.2011.01336.x
[16]  K?nig B (2012) The behaviour of the house mouse. In: Hedrich H, editor. The laboratory mouse. 2nd edition. Amsterdam: Elsevier Academic Press.
[17]  K?nig B, Lindholm A (2012) The complex social environment of female house mice (Mus domesticus). In: Macholan M, Baird S, Munclinger P, Pialek J, editors, Evolution in Our Neighbourhood. The House Mouse as a Model in Evolutionary Research. Cambridge, UK: Cambridge University Press. pp. 114–134.
[18]  Lima S, Zollner P (1996) Towards a behavioral ecology of ecological landscapes. Trends in Ecology & Evolution 11: 131–135. doi: 10.1016/0169-5347(96)81094-9
[19]  Bullard F (1999) Estimating the home range of an animal: a Brownian bridge approach. Master's thesis, University of North Carolina at Chapel Hill.
[20]  Horne J, Garton E, Krone S, Lewis J (2007) Analyzing animal movements using Brownian bridges. Ecology 88: 2354–63. doi: 10.1890/06-0957.1
[21]  Benhamou S (2011) Dynamic Approach to Space and Habitat Use Based on Biased Random Bridges. PLoS ONE 6: e14592. doi: 10.1371/journal.pone.0014592
[22]  Gardiner C (2004) Handbook of stochastic methods. New York: Springer.
[23]  Murray J (2002) Mathematical biology: an introduction, volume 1. New York: Springer.
[24]  Klein G (1952) Mean First-Passage Times of Brownian Motion and Related Problems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 211: 431–443. doi: 10.1098/rspa.1952.0051
[25]  H?nggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Reviews of Modern Physics 62: 251. doi: 10.1103/revmodphys.62.251
[26]  Laundré J, Hernández L, Altendorf K (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Canadian Journal of Zoology 79: 1401–1409. doi: 10.1139/z01-094
[27]  Willems E, Hill R (2009) Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology 90: 546–55. doi: 10.1890/08-0765.1
[28]  Newman M (2005) Power laws, Pareto distributions and Zipf's law. Contemporary Physics 46: 323–351. doi: 10.1080/00107510500052444
[29]  Mooney C, Duval R, Duval R (1993) Bootstrapping: a nonparametric approach to statistical inference. 94–95. Thousand Oaks, CA: SAGE Publications.
[30]  Brown R (1953) Social behavior, reproduction, and population changes in the house mouse (Mus musculus L.). Ecological Monographs 218–240. doi: 10.2307/1943592
[31]  Crowcroft P (1973) Mice all over. Chicago, IL: Chicago Zoological Society.
[32]  Brain P, Mainardi D, Parmigiani S (1989) House mouse aggression: a model for understanding the evolution of social behaviour. Newark, NJ: Harwood Academic Publishers.
[33]  K?nig B (1994) Fitness effects of communal rearing in house mice: The role of relatedness versus familiarity. Animal behaviour 48: 1449–1457. doi: 10.1006/anbe.1994.1381
[34]  K?nig B (1997) Cooperative care of young in mammals. Naturwissenschaften 84: 95–104. doi: 10.1007/s001140050356
[35]  Weidt A, Hofmann S, K?nig B (2008) Not only mate choice matters: fitness consequences of social partner choice in female house mice. Animal Behaviour 75: 801–808. doi: 10.1016/j.anbehav.2007.06.017
[36]  Giuggioli L, Potts J, Harris S (2011) Animal Interactions and the Emergence of Territoriality. PLoS Computational Biology 7: e1002008. doi: 10.1371/journal.pcbi.1002008
[37]  Bak P, Sneppen K (1993) Punctuated Equilibrium and Criticality in a Simple Model of Evolution. Physical Review Letters 71: 4083–4086. doi: 10.1103/physrevlett.71.4083
[38]  de Aguiar M, Baranger M, Baptestini E, Kaufman L, Bar-Yam Y (2009) Global patterns of speciation and diversity. Nature 460: 384–7. doi: 10.1038/nature08168
[39]  Harmon D, de Aguiar M, Chinellato D, Braha D, Epstein I, et al.. (2011) Predicting economic market crises using measures of collective panic. NESCI Report 2010-08-01. arXiv preprint: 1102.2620.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133