Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM). We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such “history-dependent” sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques.
References
[1]
Oberhardt MA, Palsson B?, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5: 320 doi:10.1038/msb.2009.77.
[2]
Orth JD, Thiele I, Palsson B? (2010) What is flux balance analysis? Nat Biotechnol 28: 245–248 doi:10.1038/nbt.1614.
[3]
Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Envir Microbiol 60: 3724–3731.
[4]
Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10: 435–449. doi: 10.1093/bib/bbp011
[5]
Gianchandani EP, Chavali AK, Papin JA (n.d.) The application of flux balance analysis in systems biology. WIREs Syst Biol Med 2: 372–382. doi: 10.1002/wsbm.60
[6]
Covert MW, Palsson B? (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277: 28058–28064 doi:10.1074/jbc.M201691200.
[7]
Shlomi T, Eisenberg Y, Sharan R, Ruppin E (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3: 101 doi:10.1038/msb4100141.
[8]
Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics (Oxford, England) 24: 2044–2050 doi:10.1093/bioinformatics/btn352.
[9]
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, et al. (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5: e1000489 doi:10.1371/journal.pcbi.1000489.
[10]
Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107: 17845–17850 doi:10.1073/pnas.1005139107.
[11]
Jensen PA, Papin JA (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics (Oxford, England) 27: 541–547 doi:10.1093/bioinformatics/btq702.
[12]
Shlomi T, Cabili MN, Herrg?rd MJ, Palsson B?, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–1010 doi:10.1038/nbt.1487.
[13]
Becker SA, Palsson BO (2008) Context-Specific Metabolic Networks Are Consistent with Experiments. PLoS Comput Biol 4: e1000082 doi:10.1371/journal.pcbi.1000082.
[14]
Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10: 291–305 doi:10.1038/nrmicro2737.
[15]
Schwanh?usser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342 doi:10.1038/nature10098.
Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. (2008) Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res 36: D866–70 doi:10.1093/nar/gkm815.
[18]
Beg QK, Zampieri M, Klitgord N, Collins SB, Altafini C, et al. (2012) Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratory-versatile bacterium Shewanella oneidensis. Nucleic Acids Res 40(15): 7132–7149. doi: 10.1093/nar/gks467
[19]
Nealson KH, Scott J (2006) Ecophysiology of the Genus Shewanella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes. New York: Springer. pp. 1133–1142.
[20]
Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, et al. (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6: 592–603 doi:10.1038/nrmicro1947.
[21]
Pinchuk GE, Hill EA, Geydebrekht OV, De Ingeniis J, Zhang X, et al. (2010) Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation. PLoS Comput Biol 6: e1000822 doi:10.1371/journal.pcbi.1000822.
[22]
Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61: 237–258 doi:10.1146/annurev.micro.61.080706.093257.
[23]
Tang YJ, Hwang JS, Wemmer DE, Keasling JD (2007) Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microb 73: 718–729 doi:10.1128/AEM.01532-06.
[24]
Feng X, Xu Y, Chen Y, Tang YJ (2012) Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput Biol 8: e1002376 doi:10.1371/journal.pcbi.1002376.
[25]
Eiteman MA, Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB (2006) Overflow Metabolism in Escherichia coli during Steady-State Growth: Transcriptional Regulation and Effect of the Redox Ratio Overflow Metabolism in Escherichia coli during Steady-State Growth: Transcriptional Regulation and Effect of the Redox Ratio. Appl Environ Microbiol doi:10.1128/AEM.72.5.3653.
[26]
Roberts GG, Hudson AP (2006) Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genomics 276: 170–186. doi: 10.1007/s00438-006-0133-9
[27]
Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science (New York, NY) 310: 1152–1158 doi:10.1126/science.1120499.
[28]
Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, et al. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538 doi:10.1126/science.1188308.
[29]
Fendt S-M, Buescher JM, Rudroff F, Picotti P, Zamboni N, et al. (2010) Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 6: 356 doi:10.1038/msb.2010.11.
[30]
Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3: 119 doi:10.1038/msb4100162.
[31]
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15. doi: 10.1093/nar/gng015
[32]
Mo ML, Palsson BO, Herrg?rd MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3: 37 doi:10.1186/1752-0509-3-37.