全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Basis of Calcium-Sensitizing and Desensitizing Mutations of the Human Cardiac Troponin C Regulatory Domain: A Multi-Scale Simulation Study

DOI: 10.1371/journal.pcbi.1002777

Full-Text   Cite this paper   Add to My Lib

Abstract:

Troponin C (TnC) is implicated in the initiation of myocyte contraction via binding of cytosolic and subsequent recognition of the Troponin I switch peptide. Mutations of the cardiac TnC N-terminal regulatory domain have been shown to alter both calcium binding and myofilament force generation. We have performed molecular dynamics simulations of engineered TnC variants that increase or decrease sensitivity, in order to understand the structural basis of their impact on TnC function. We will use the distinction for mutants that are associated with increased affinity and for those mutants with reduced affinity. Our studies demonstrate that for GOF mutants V44Q and L48Q, the structure of the physiologically-active site II binding site in the -free (apo) state closely resembled the -bound (holo) state. In contrast, site II is very labile for LOF mutants E40A and V79Q in the apo form and bears little resemblance with the holo conformation. We hypothesize that these phenomena contribute to the increased association rate, , for the GOF mutants relative to LOF. Furthermore, we observe significant positive and negative positional correlations between helices in the GOF holo mutants that are not found in the LOF mutants. We anticipate these correlations may contribute either directly to affinity or indirectly through TnI association. Our observations based on the structure and dynamics of mutant TnC provide rationale for binding trends observed in GOF and LOF mutants and will guide the development of inotropic drugs that target TnC.

References

[1]  Gordon AMA, Homsher EE, Regnier MM (2000) Regulation of contraction in striated muscle. Physiol Rev 80: 853–924.
[2]  Tardiff JCJ (2005) Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Failure Rev 10: 237–248. doi: 10.1007/s10741-005-5253-5
[3]  Gomes A, Liang J, Potter J (2005) Mutations in human cardiac Troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem 280: 30909–30915. doi: 10.1074/jbc.m500287200
[4]  Marston SB (2011) How Do Mutations in Contractile Proteins Cause the Primary Familial Cardiomyopathies? J Cardio Trans Res 4: 245–255. doi: 10.1007/s12265-011-9266-2
[5]  Kimura A (2010) Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. J Hum Genet 55: 81–90. doi: 10.1038/jhg.2009.138
[6]  Lim CC, Yang H, Yang M, Wang CK, Shi J, et al. (2008) A novel mutant cardiac troponin C disrupts molecular motions critical for calcium binding affinity and cardiomyocyte contractility. Biophys J 94: 3577–3589. doi: 10.1529/biophysj.107.112896
[7]  Li Y, Love ML, Cohen C 4 (2000) Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci 97: 5140–5145. doi: 10.1073/pnas.090098997
[8]  Parvatiyar MS, Pinto JR, Liang J, Potter JD (2010) Predicting cardiomyopathic phenotypes by altering the Ca2+ affinity of cardiac troponin C. The J Biol Chem 285: 27785–27797. doi: 10.1074/jbc.m110.112326
[9]  Pinto J, Parvatiyar M, Jones M, Liang J, Ackerman M, et al. (2009) A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. The J Biol Chem 284: 19090. doi: 10.1074/jbc.m109.007021
[10]  Tikunova SB, Davis J (2004) Designing Calcium-sensitizing Mutations in the Regulatory Domain of Cardiac Troponin C. J Biol Chem 279: 35341–35352. doi: 10.1074/jbc.m405413200
[11]  Robertson I, Boyko R, Sykes B (2011) Visualizing the principal component of 1 H, 15 N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. J Biomol NMR 51: 115–122. doi: 10.1007/s10858-011-9546-9
[12]  Takeda S, Yamashita A, Maeda K, Ma'eda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424: 35–41. doi: 10.1038/nature01780
[13]  Spyracopoulos L, Lavigne P, Crump MP, Gagn'e SM, Kay CM, et al. (2001) Temperature Dependence of Dynamics and Thermodynamics of the Regulatory Domain of Human Cardiac Troponin C. Biochemistry 40: 12541–12551. doi: 10.1021/bi010903k
[14]  Spyracopoulos L, Gagn'e SM, Li MX, Sykes BD (1998) Dynamics and Thermodynamics of the Regulatory Domain of Human Cardiac Troponin C in the Apo- and Calcium-Saturated States. Biochemistry 37: 18032–18044. doi: 10.1021/bi9816960
[15]  Spyracopoulos L, Li MX, Sia SK, Gagné SM, Chandra M, et al. (1997) Calcium-Induced Structural Transition in the Regulatory Domain of Human Cardiac Troponin C,. Biochemistry 36: 12138–12146. doi: 10.1021/bi971223d
[16]  Lindert S, Kekenes-Huskey PM, Huber G, Pierce L, McCammon JA (2012) Dynamics and Calcium Association to the N-Terminal Regulatory Domain of Human Cardiac Troponin C: A Multiscale Computational Study. J Phys Chem B 116: 8449–59. doi: 10.1021/jp212173f
[17]  Varughese JF, Li Y (2011) Molecular Dynamics and Docking Studies on Cardiac Troponin C. J Biomol Struct Dyn 29: 123–135. doi: 10.1080/07391102.2011.10507378
[18]  Lindert S, Kekenes-Huskey , McCammon A (2012) Millisecond-timescale simulations of Troponin C. Biophys J In press. doi: 10.1016/j.bpj.2012.08.058
[19]  Wang D, Robertson I, Li M, McCully M (2012) Structural and functional consequences of the cardiac troponin C L48Q Ca2+-sensitizing mutation. Biochemistry 51: 4473–87. doi: 10.1021/bi3003007
[20]  Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115: 9169. doi: 10.1063/1.1410978
[21]  Oleszczuk M, Robertson IM, Li MX, Sykes BD (2010) Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: The basis of W7 as an inhibitor of cardiac muscle contraction. J Mol Cell Cardiol 48: 925–933. doi: 10.1016/j.yjmcc.2010.01.016
[22]  Gagn'e SMS, Li MXM, McKay RTR, Sykes BDB (1998) The NMR angle on troponin C. Biochem Cell Biol 76: 302–312. doi: 10.1139/bcb-76-2-3-302
[23]  Wand A (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Mol Biol 8: 926–931.
[24]  Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ (2010) The role of conformational entropy in molecular recognition by calmodulin. Nat Chem Biol 6: 352–358. doi: 10.1038/nchembio.347
[25]  Li DW, Showalter SA, Br¨uschweiler R (2010) Entropy Localization in Proteins. J Phys Chem B 114: 16036–16044. doi: 10.1021/jp109908u
[26]  Alsallaq R, Zhou HX (2008) Electrostatic rate enhancement and transient complex of proteinprotein association. Prot Func Bioinformatics 71: 320–335. doi: 10.1002/prot.21679
[27]  Ogawa Y (1985) Calcium binding to troponin C and troponin: effects of Mg2+, ionic strength and pH. J Biochem 97: 1011–1023.
[28]  Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ (1998) The kinetic cycle of cardiac troponin C: Calcium binding and dissociation at site II trigger slow conformational rearrangements. Prot Sci 7: 2451–2459. doi: 10.1002/pro.5560071123
[29]  Konhilas JP (2001) Myofilament Calcium Sensitivity in Skinned Rat Cardiac Trabeculae: Role of Interfilament Spacing. Circ Res 90: 59–65. doi: 10.1161/hh0102.102269
[30]  Tikunova S, Rall J, Davis J (2002) Effect of hydrophobic residue substitutions with glutamine on Ca2+ binding and exchange with the N-domain of troponin C. Biochemistry 41: 6697–6705. doi: 10.1021/bi011763h
[31]  BERNSTEIN FC, KOETZLE TF, WILLIAMS GJB, MEYER EF, BRICE MD, et al. (1977) The Protein Data Bank. A Computer-Based Archival File for Macromolecular Structures. Eur J Biochem 80: 319–324. doi: 10.1111/j.1432-1033.1977.tb11885.x
[32]  Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14: 33–38. doi: 10.1016/0263-7855(96)00018-5
[33]  Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, et al. (2009) CHARMM: The biomolecular simulation program. J Comp Chem 30: 1545–1614. doi: 10.1002/jcc.21287
[34]  Phillips J, Braun R, WangW, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26: 1781–1802. doi: 10.1002/jcc.20289
[35]  Dickson B, Legoll F, Lelievre T, Stoltz G, Fleurat-Lessard P (2010) Free energy calculations: An efficient adaptive biasing potential method. J Phys Chem B 114: 5823–5830. doi: 10.1021/jp100926h
[36]  Grant BJ, Rodrigues APC, ElSawy KM, McCammon J, Caves LSD (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22: 2695–2696. doi: 10.1093/bioinformatics/btl461
[37]  Christen MM, H¨unenberger PHP, Bakowies DD, Baron RR, B¨urgi RR, et al. (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comp Chem 26: 1719–1751. doi: 10.1002/jcc.20303
[38]  Kabsch WW, Sander CC (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211
[39]  Yap KLK, Ames JBJ, Ikura MM 4 (2002) Vector geometry mapping. A method to characterize the conformation of helix-loop-helix calcium-binding proteins. Methods Mol Biol 173: 317–324. doi: 10.1385/1-59259-184-1:317
[40]  Baker NA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: 10037–10041. doi: 10.1073/pnas.181342398
[41]  Prompers JJ, Br¨uschweiler R (2002) General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J Am Chem Soc 124: 4522–4534. doi: 10.1021/ja012750u
[42]  Huber GA, McCammon JA (2010) Browndye: A Software Package for Brownian Dynamics. Comput Phys Commun 181: 1896–1905. doi: 10.1016/j.cpc.2010.07.022
[43]  Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522–W525. doi: 10.1093/nar/gkm276

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133