全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computational Phenotyping of Two-Person Interactions Reveals Differential Neural Response to Depth-of-Thought

DOI: 10.1371/journal.pcbi.1002841

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans.

References

[1]  Sanfey AG (2007) Social decision-making: insights from game theory and neuroscience. Science 318: 598–602. doi: 10.1126/science.1142996
[2]  Lee D (2008) Game theory and neural basis of social decision making. Nat Neurosci 11: 404–409. doi: 10.1038/nn2065
[3]  Hampton AN, Bossaerts P, O'Doherty JP (2007) Neural correlates of mentalizing-related computations during strategic interactions in humans. Proc Natl Acad Sci USA 105: 6741–6746. doi: 10.1073/pnas.0711099105
[4]  Yoshida W, Dolan RJ, Friston KJ (2008) Game theory of mind. PLoS Comput Biol 4: e1000254. doi: 10.1371/journal.pcbi.1000254
[5]  Yoshida W, Seymour B, Dolan RJ, Friston KJ (2010) Neural Influence of belief inference during social games. J Neurosci 30: 10744–10751. doi: 10.1523/jneurosci.5895-09.2010
[6]  Yoshida W, Dziobek I, Kliemann D, Heekeren HR, Friston KJ, et al. (2010) Cooperation and heterogeneity of the Austistic Mind. J Neurosci 30: 8815–8818. doi: 10.1523/jneurosci.0400-10.2010
[7]  King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz SR, et al. (2005) Getting to know you: reputation and trust in a two-person economic exchange. Science 308: 78–83. doi: 10.1126/science.1108062
[8]  Tomlin D, Kayali MA, King-Casas B, Anen C, Camerer CF, et al. (2006) Agent-specific responses in the cingulate cortex during economic exchanges. Science 312: 1047–1050. doi: 10.1126/science.1125596
[9]  King-Casas B, Sharp C, Loman-Bream L, Lohrenz T, Fonagy P, et al. (2008) The rupture and repair of cooperation in Borderline Personality Disorder. Science 321: 806–810. doi: 10.1126/science.1156902
[10]  Ray D, King-Casas B, Montague PR, Dayan P (2008) Bayesian model of behaviour in economic games. NIPS 21: 1345–1353.
[11]  Fehr E, Camerer CF (2007) Social neuroeconomics: the neural circuitry of social preferences. Trends Cogn Sci 11: 419–427. doi: 10.1016/j.tics.2007.09.002
[12]  Camerer CF, Ho T-H, Chong J-K (2004) A cognitive hierarchy model of games. Q J Econ 119: 861–898. doi: 10.1162/0033553041502225
[13]  Fehr E, Schmidt KM (1999) A theory of fairness, competition, and cooperation. Q J Econ 114: 817–868. doi: 10.1162/003355399556151
[14]  Harsanyi JC (1967) Games with incomplete information played by “Bayesian” players. Manage Sci 14: 159–182. doi: 10.1287/mnsc.14.3.159
[15]  Camerer CF (2003) Behavioral Game theory: Experiments in Strategic Interaction. Princeton, New Jersey: Princeton University Press.
[16]  Dugatkin LA, Reeve HK (2000) Game Theory and Animal Behavior. New York: Oxford University Press.
[17]  O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38: 329–337. doi: 10.1016/s0896-6273(03)00169-7
[18]  Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5: 97–98. doi: 10.1038/nn802
[19]  Haruno M, Kuroda T, Doya K, Toyama K, Kimura M, et al. (2004) A neural correlate of reward-based behavioral learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. J Neurosci 24: 1660–1665. doi: 10.1523/jneurosci.3417-03.2004
[20]  Koshelev M, Lohrenz T, Vannucci M, Montague PR (2010) Biosensor approach to psychopathology classification. PLos Comput Biol 6: e1000966. doi: 10.1371/journal.pcbi.1000966
[21]  McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38: 339–346. doi: 10.1016/s0896-6273(03)00154-5
[22]  O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, et al. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304: 452–454. doi: 10.1126/science.1094285
[23]  Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioral control. Nature 431: 760–767. doi: 10.1038/nature03015
[24]  Behrens TEJ, Hunt LT, Woolrich MW, Rushworth NFS (2008) Associative learning of social value. Nature 456: 245–250. doi: 10.1038/nature07538
[25]  Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of temporo-parietal junction in “theory of mind”. Neuroimage 19: 1835–1842. doi: 10.1016/s1053-8119(03)00230-1
[26]  Young L, Camprodon JA, Hauser M, Pascual-Leone A, Saxe R (2010) Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduced the role of beliefs in moral judgements. Proc Natl Acad Sci USA 107: 6753–6758. doi: 10.1073/pnas.0914826107
[27]  Bhatt MA, Lohrenz T, Camerer CF, Montague PR (2010) Neural signatures of strategic types in a two-person bargaining game. Proc Natl Acad Sci USA 107: 19720–19725. doi: 10.1073/pnas.1009625107
[28]  Mars R, Sallet J, Schüffelgen U, Jbabdi S, Toni I, et al. (2012) Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22: 1894–903 Epub 2011 Sep 27. doi: 10.1093/cercor/bhr268
[29]  Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. Cambridge, Massachusetts: MIT Press.
[30]  Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16: 1936–1947.
[31]  Montague PR, King-Casas B, Cohen JD (2006) Imaging valuation models in human choice. Annu Rev Neurosci 29: 417–448. doi: 10.1146/annurev.neuro.29.051605.112903
[32]  Seo H, Lee D (2008) Cortical mechanisms for reinforcement learning in competitive games. Phil Trans R Soc B 363: 3845–3857. doi: 10.1098/rstb.2008.0158
[33]  Behrens TEJ, Hunt LT, Rushworth NFS (2009) The computation of social behavior. Science 324: 1160–1164. doi: 10.1126/science.1169694

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133