[1] | Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer 7: 233–245. doi: 10.1038/nrc2091
|
[2] | Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochimica et Biophysica Acta 1786: 139–152. doi: 10.1016/j.bbcan.2008.07.005
|
[3] | Rowley JD (2001) Chromosome translocations: dangerous liaisons revisited. Nature Reviews Cancer 1: 245–250. doi: 10.1038/35106108
|
[4] | Rabbitts TH (2009) Commonality but diversity in cancer gene fusions. Cell 137: 391–395. doi: 10.1016/j.cell.2009.04.034
|
[5] | Novo FJ, de Mendíbil IO, Vizmanos JL (2007) TICdb: a collection of gene-mapped translocation breakpoints in cancer. BMC Genomics 8: 33.
|
[6] | Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biology 5: R44. doi: 10.1186/gb-2004-5-7-r44
|
[7] | Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genetics 34: 287–291. doi: 10.1038/ng1177
|
[8] | Lin C, Yang L, Rosenfeld MG (2012) Molecular logic underlying chromosomal translocations, random or non-random? Advances in Cancer Research 113: 241–279. doi: 10.1016/b978-0-12-394280-7.00015-4
|
[9] | Gostissa M, Alt FW, Chiarle R (2011) Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annual Review of Immunology 29: 319–350. doi: 10.1146/annurev-immunol-031210-101329
|
[10] | Mitelman F, Johansson B, Mertens F (2004) Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genetics 36: 331–334. doi: 10.1038/ng1335
|
[11] | Forster A, Pannell R, Drynan LF, Codrington R, Daser A, et al. (2005) The invertor knock-in conditional chromosomal translocation mimic. Nature Methods 2: 27–30. doi: 10.1038/nmeth727
|
[12] | Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nature Reviews Genetics 12: 846–860. doi: 10.1038/nrg3079
|
[13] | Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010) The role of microRNAs in normal and malignant hematopoiesis. European Journal of Haematology 84: 1–16. doi: 10.1111/j.1600-0609.2009.01348.x
|
[14] | Ortiz de Mendíbil I, Vizmanos JL, Novo FJ (2009) Signatures of selection in fusion transcripts resulting from chromosomal translocations in human cancer. PLoS ONE 4: e4805. doi: 10.1371/journal.pone.0004805
|
[15] | Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4: 44–57. doi: 10.1038/nprot.2008.211
|
[16] | Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289–293. doi: 10.1126/science.1181369
|
[17] | Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics 43: 1059–1065. doi: 10.1038/ng.947
|
[18] | Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, et al. (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Research 20: 761–770. doi: 10.1101/gr.099655.109
|
[19] | Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, et al. (2009) Human mutation rate associated with DNA replication timing. Nature Genetics 41: 393–395. doi: 10.1038/ng.363
|
[20] | De S, Michor F (2011) DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nature Biotechnology 29: 1103–1108. doi: 10.1038/nbt.2030
|
[21] | Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372: 143–149. doi: 10.1038/372143a0
|
[22] | Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576–1579. doi: 10.1126/science.1137999
|
[23] | Gomez-Benito M, Loayza-Puch F, Oude Vrielink J, Odero MD, Agami R (2011) 3′UTR-Mediated Gene Silencing of the Mixed Lineage Leukemia (MLL) Gene. PLoS ONE 6: e25449. doi: 10.1371/journal.pone.0025449
|
[24] | Ruiz JF, Gómez-González B, Aguilera A (2011) AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants. PLoS Genetics 7: e1002009. doi: 10.1371/journal.pgen.1002009
|
[25] | Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, et al. (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147: 107–119. doi: 10.1016/j.cell.2011.07.049
|
[26] | Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, et al. (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147: 95–106. doi: 10.1016/j.cell.2011.07.048
|
[27] | Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, et al. (2012) Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 149: 979–993. doi: 10.1016/j.cell.2012.04.024
|
[28] | Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nature Reviews Genetics 10: 551–564. doi: 10.1038/nrg2593
|
[29] | Lang GI, Murray AW (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biology and Evolution 3: 799–811. doi: 10.1093/gbe/evr054
|
[30] | Aran D, Toperoff G, Rosenberg M, Hellman A (2011) Replication timing-related and gene body-specific methylation of active human genes. Human Molecular Genetics 20: 670–680. doi: 10.1093/hmg/ddq513
|
[31] | Rabbitts TH (1991) Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 67: 641–644. doi: 10.1016/0092-8674(91)90057-6
|
[32] | Hegyi H, Buday L, Tompa P (2009) Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins. PLoS Computational Biology 5: e1000552. doi: 10.1371/journal.pcbi.1000552
|
[33] | Pawson T, Warner N (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene 26: 1268–1275. doi: 10.1038/sj.onc.1210255
|
[34] | Füllgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30: 3391–3403. doi: 10.1038/onc.2011.121
|
[35] | Slany RK (2005) When epigenetics kills: MLL fusion proteins in leukemia. Hematological Oncology 23: 1–9. doi: 10.1002/hon.739
|
[36] | Tenney K, Shilatifard A (2005) A COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatin. Journal of Cellular Biochemistry 95: 429–436. doi: 10.1002/jcb.20421
|
[37] | Dostie J, Bickmore WA (2012) Chromosome organization in the nucleus - charting new territory across the Hi-Cs. Current Opinion in Genetics & Development 22: 125–131. doi: 10.1016/j.gde.2011.12.006
|
[38] | Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nature Biotechnology 30: 90–98. doi: 10.1038/nbt.2057
|
[39] | Ryba T, Hiratani I, Sasaki T, Battaglia D, Kulik M, et al. (2011) Replication timing: a fingerprint for cell identity and pluripotency. PLoS Computational Biology 7: e1002225. doi: 10.1371/journal.pcbi.1002225
|
[40] | Gilbert DM, Takebayashi S-I, Ryba T, Lu J, Pope BD, et al. (2010) Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harbor Symposia on Quantitative Biology 75: 143–153. doi: 10.1101/sqb.2010.75.011
|
[41] | de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Research 11: 447–459. doi: 10.1023/a:1024922626726
|
[42] | Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harbor perspectives in biology 2: a003889. doi: 10.1101/cshperspect.a003889
|
[43] | Kress C, Ballester M, Devinoy E, Rijnkels M (2010) Epigenetic modifications in 3D: nuclear organization of the differentiating mammary epithelial cell. Journal of Mammary Gland Biology and Neoplasia 15: 73–83. doi: 10.1007/s10911-010-9169-x
|
[44] | Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148: 458–472. doi: 10.1016/j.cell.2012.01.010
|
[45] | Gruenbaum Y, Hochstrasser M, Mathog D, Saumweber H, Agard DA, et al. (1984) Spatial organization of the Drosophila nucleus: a three-dimensional cytogenetic study. Journal of Cell Science Supplement 1: 223–234. doi: 10.1242/jcs.1984.supplement_1.14
|
[46] | Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nature Reviews Cancer 8: 11–23. doi: 10.1038/nrc2291
|
[47] | Wijchers PJ, de Laat W (2011) Genome organization influences partner selection for chromosomal rearrangements. Trends in Genetics 27: 63–71. doi: 10.1016/j.tig.2010.11.001
|
[48] | Miné-Hattab J, Rothstein R (2012) Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biology 14: 510–517. doi: 10.1038/ncb2472
|
[49] | Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biology 14: 502–509. doi: 10.1038/ncb2465
|
[50] | Grossmann V, Kohlmann A, Klein H-U, Schindela S, Schnittger S, et al. (2011) Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia 25: 671–680. doi: 10.1038/leu.2010.309
|
[51] | Sakarya O, Breu H, Radovich M, Chen Y, Wang YN, et al. (2012) RNA-Seq Mapping and Detection of Gene Fusions with a Suffix Array Algorithm. PLoS Computational Biology 8: e1002464. doi: 10.1371/journal.pcbi.1002464
|
[52] | Asmann YW, Necela BM, Kalari KR, Hossain A, Baker TR, et al. (2012) Detection of Redundant Fusion Transcripts as Biomarkers or Disease-Specific Therapeutic Targets in Breast Cancer. Cancer Research 72: 1921–1928. doi: 10.1158/0008-5472.can-11-3142
|
[53] | D?lken G, Illerhaus G, Hirt C, Mertelsmann R (1996) BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. Journal of Clinical Oncology 14: 1333–1344.
|
[54] | Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, et al. (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7: 67–80. doi: 10.1007/s10048-006-0032-6
|
[55] | Wang X, Wei X, Thijssen B, Das J, Lipkin SM, et al. (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nature Biotechnology 30: 159–164. doi: 10.1038/nbt.2106
|
[56] | Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, et al. (2012) Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation. Database 2012: bar068. doi: 10.1093/database/bar068
|
[57] | Engretiz JM, Agarwala V, Mirny LA (2012) Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease. PLoS ONE 7(9): e44196. doi: 10.1371/journal.pone.0044196
|