全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chapter 11: Genome-Wide Association Studies

DOI: 10.1371/journal.pcbi.1002822

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genome-wide association studies (GWAS) have evolved over the last ten years into a powerful tool for investigating the genetic architecture of human disease. In this work, we review the key concepts underlying GWAS, including the architecture of common diseases, the structure of common human genetic variation, technologies for capturing genetic information, study designs, and the statistical methods used for data analysis. We also look forward to the future beyond GWAS.

References

[1]  Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, et al. (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308: 419–421 doi: 10.1126/science.1110359.
[2]  Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, et al. (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308: 421–424 doi: 10.1126/science.1110189.
[3]  Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389 doi: 10.1126/science.1109557.
[4]  Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, et al. (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112: 1022–1027 doi: 10.1182/blood-2008-01-134247.
[5]  Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073 doi: 10.1038/nature09534.
[6]  Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, et al. (2008) ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 36: D107–D113 doi: 10.1093/nar/gkm967.
[7]  Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467: 52–58 doi: 10.1038/nature09298.
[8]  Kerem B, Rommens JM, Buchanan JA, Markiewicz D, et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080. doi: 10.1126/science.2570460
[9]  MacDonald ME, Novelletto A, Lin C, Tagle D, Barnes G, et al. (1992) The Huntington's disease candidate region exhibits many different haplotypes. Nat Genet 1: 99–103 doi: 10.1038/ng0592-99.
[10]  Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6: 95–108 doi: 10.1038/nrg1521.
[11]  Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261: 921–923. doi: 10.1126/science.8346443
[12]  Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, et al. (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26: 76–80 doi: 10.1038/79216.
[13]  Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17: 502–510. doi: 10.1016/s0168-9525(01)02410-6
[14]  Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367 doi: 10.1073/pnas.0903103106.
[15]  International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437: 1299–1320 doi: 10.1038/nature04226.
[16]  Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, et al. (2010) Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 86: 560–572 doi: 10.1016/j.ajhg.2010.03.003.
[17]  Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29: 311–322 doi: 10.1006/geno.1995.9003.
[18]  Fallin D, Schork NJ (2000) Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet 67: 947–959 doi: 10.1086/303069.
[19]  Li M, Li C, Guan W (2008) Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet 16: 635–643 doi: 10.1038/sj.ejhg.5202007.
[20]  Distefano JK, Taverna DM (2011) Technological issues and experimental design of gene association studies. Methods Mol Biol 700: 3–16 doi: 10.1007/978-1-61737-954-3_1.
[21]  Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466: 707–713 doi: 10.1038/nature09270.
[22]  Habek M, Brinar VV, Borovecki F (2010) Genes associated with multiple sclerosis: 15 and counting. Expert Rev Mol Diagn 10: 857–861 doi: 10.1586/erm.10.77.
[23]  Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58: 840–846 doi: 10.1002/ana.20703.
[24]  Chew EY, Kim J, Sperduto RD, Datiles MB III, Coleman HR, et al. (2010) Evaluation of the age-related eye disease study clinical lens grading system AREDS report No. 31. Ophthalmology 117: 2112–2119 doi: 10.1016/j.ophtha.2010.02.033.
[25]  Denny JC, Ritchie MD, Crawford DC, Schildcrout JS, Ramirez AH, et al. (2010) Identification of genomic predictors of atrioventricular conduction: using electronic medical records as a tool for genome science. Circulation 122: 2016–2021 doi: 10.1161/CIRCULATIONAHA.110.948828.
[26]  Wilke RA, Berg RL, Linneman JG, Peissig P, Starren J, et al. (2010) Quantification of the clinical modifiers impacting high-density lipoprotein cholesterol in the community: Personalized Medicine Research Project. Prev Cardiol 13: 63–68 doi: 10.1111/j.1751-7141.2009.00055.x.
[27]  Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, et al. (2010) Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. J Am Med Inform Assoc 17: 568–574 doi: 10.1136/jamia.2010.004366.
[28]  McCarty CA, Wilke RA (2010) Biobanking and pharmacogenomics. Pharmacogenomics 11: 637–641 doi: 10.2217/pgs.10.13.
[29]  Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3: 146–153. doi: 10.1093/bib/3.2.146
[30]  Lettre G, Lange C, Hirschhorn JN (2007) Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol 31: 358–362 doi: 10.1002/gepi.20217.
[31]  Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
[32]  Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909 doi: 10.1038/ng1847.
[33]  Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811–818. doi: 10.1002/sim.4780090710
[34]  van den Oord EJ (2008) Controlling false discoveries in genetic studies. Am J Med Genet B Neuropsychiatr Genet 147B: 637–644 doi: 10.1002/ajmg.b.30650.
[35]  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575 doi: 10.1086/519795.
[36]  Browning BL (2008) PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies. BMC Bioinformatics 9: 309 doi: 10.1186/1471-2105-9-309.
[37]  Pahl R, Schafer H (2010) PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing. Bioinformatics 26: 2093–2100 doi: 10.1093/bioinformatics/btq399.
[38]  Dudbridge F, Gusnanto A (2008) Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 32: 227–234 doi: 10.1002/gepi.20297.
[39]  Moore JH, Ritchie MD (2004) STUDENTJAMA. The challenges of whole-genome approaches to common diseases. JAMA 291: 1642–1643 doi: 10.1001/jama.291.13.1642.
[40]  Grady BJ, Torstenson ES, McLaren PJ, de Bakker PI, Haas DW, et al. (2011) Use of biological knowledge to inform the analysis of gene-gene interactions involved in modulating virologic failure with efavirenz-containing treatment regimens in art-naive actg clinical trials participants. Pac Symp Biocomput 253–264. doi: 10.1142/9789814335058_0027
[41]  Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput 368–379. doi: 10.1142/9789812836939_0035
[42]  Herold C, Steffens M, Brockschmidt FF, Baur MP, Becker T (2009) INTERSNP: genome-wide interaction analysis guided by a priori information. Bioinformatics 25: 3275–3281 doi: 10.1093/bioinformatics/btp596.
[43]  Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, et al. (2007) Replicating genotype-phenotype associations. Nature 447: 655–660 doi: 10.1038/447655a.
[44]  Zollner S, Pritchard JK (2007) Overcoming the winner's curse: estimating penetrance parameters from case-control data. Am J Hum Genet 80: 605–615 doi: 10.1086/512821.
[45]  Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, et al. (2008) Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 40: 198–203 doi: 10.1038/ng.74.
[46]  Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, et al. (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40: 161–169 doi: 10.1038/ng.76.
[47]  Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10: 191–201 doi: 10.2217/14622416.10.2.191.
[48]  Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11: 193–206 doi: 10.1037/1082-989X.11.2.193.
[49]  Higgins JP (2008) Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol 37: 1158–1160 doi: 10.1093/ije/dyn204.
[50]  Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10: 387–406 doi: 10.1146/annurev.genom.9.081307.164242.
[51]  Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39: 906–913 doi: 10.1038/ng2088.
[52]  Guan Y, Stephens M (2008) Practical issues in imputation-based association mapping. PLoS Genet 4: e1000279 doi: 10.1371/journal.pgen.1000279.
[53]  Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529 doi: 10.1371/journal.pgen.1000529.
[54]  Biernacka JM, Tang R, Li J, McDonnell SK, Rabe KG, et al. (2009) Assessment of genotype imputation methods. BMC Proc 3 Suppl 7: S5. doi: 10.1186/1753-6561-3-s7-s5
[55]  Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84: 210–223 doi: 10.1016/j.ajhg.2009.01.005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133