全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chapter 5: Network Biology Approach to Complex Diseases

DOI: 10.1371/journal.pcbi.1002820

Full-Text   Cite this paper   Add to My Lib

Abstract:

Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.

References

[1]  Veenstra-Vanderweele J, Christian SL, Cook EH Jr (2004) Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet 5: 379–405. doi: 10.1146/annurev.genom.5.061903.180050
[2]  Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, et al. (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466: 368–372.
[3]  Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461: 218–223. doi: 10.1038/nature08454
[4]  Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36: 1398–1403. doi: 10.1042/bst0361398
[5]  Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118: 4947–4957. doi: 10.1242/jcs.02714
[6]  Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42. doi: 10.1038/35075138
[7]  Zotenko E, Mestre J, O'Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 4: e1000140 doi:10.1371/journal.pcbi.1000140.
[8]  Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22: 2291–2297. doi: 10.1093/bioinformatics/btl390
[9]  Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21: 4205–4208. doi: 10.1093/bioinformatics/bti688
[10]  De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6: e1000807 doi:10.1371/journal.pcbi.1000807.
[11]  Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7: 2833–2842. doi: 10.1002/pmic.200700131
[12]  Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322: 104–110. doi: 10.1126/science.1158684
[13]  Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3: e43 doi:10.1371/journal.pcbi.0030043.
[14]  Levy ED, Landry CR, Michnick SW (2009) How perfect can protein interactomes be? Sci Signal 2: pe11. doi: 10.1126/scisignal.260pe11
[15]  Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868. doi: 10.1073/pnas.95.25.14863
[16]  The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res 38: D331–335. doi: 10.1093/nar/gkp1018
[17]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
[18]  Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306: 1555–1558. doi: 10.1126/science.1099511
[19]  Costello JC, Dalkilic MM, Beason SM, Gehlhausen JR, Patwardhan R, et al. (2009) Gene networks in Drosophila melanogaster: integrating experimental data to predict gene function. Genome Biol 10: R97. doi: 10.1186/gb-2009-10-9-r97
[20]  Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, et al. (2008) A genomewide functional network for the laboratory mouse. PLoS Comput Biol 4: e1000165 doi:10.1371/journal.pcbi.1000165.
[21]  Ramani AK, Li Z, Hart GT, Carlson MW, Boutz DR, et al. (2008) A map of human protein interactions derived from co-expression of human mRNAs and their orthologs. Mol Syst Biol 4: 180. doi: 10.1038/msb.2008.19
[22]  Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1: S7. doi: 10.1186/1471-2105-7-s1-s7
[23]  Peng J, Wang P, Zhou N, Zhu J (2009) Partial Correlation Estimation by Joint Sparse Regression Models. J Am Stat Assoc 104: 735–746. doi: 10.1198/jasa.2009.0126
[24]  Pe'er D (2005) Bayesian network analysis of signaling networks: a primer. Sci STKE 2005: l4. doi: 10.1126/stke.2812005pl4
[25]  Alterovitz G, Liu J, Afkhami E, Ramoni MF (2007) Bayesian methods for proteomics. Proteomics 7: 2843–2855. doi: 10.1002/pmic.200700422
[26]  Xuan NV, Chetty M, Coppel R, Wangikar PP (2012) Gene regulatory network modeling via global optimization of high-order dynamic Bayesian network. BMC Bioinformatics 13: 131. doi: 10.1186/1471-2105-13-131
[27]  Zou M, Conzen SD (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21: 71–79. doi: 10.1093/bioinformatics/bth463
[28]  Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47–52. doi: 10.1038/35011540
[29]  Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22: 1021–1023. doi: 10.1093/bioinformatics/btl039
[30]  Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7: 207. doi: 10.1186/1471-2105-7-207
[31]  Arnau V, Mars S, Marín I (2005) Iterative Cluster Analysis of Protein Interaction Data. Bioinformatics 21: 364–378. doi: 10.1093/bioinformatics/bti021
[32]  Asthana S, King OD, Gibbons FD, Roth FP (2004) Predicting protein complex membership using probabilistic network reliability. Genome Res 14: 1170–1175. doi: 10.1101/gr.2203804
[33]  Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2.
[34]  Bader JS (2003) Greedily building protein networks with confidence. Bioinformatics 19: 1869–1874. doi: 10.1093/bioinformatics/btg358
[35]  Brun C, Chevenet F, Martin D, Wojcik J, Guenoche A, et al. (2003) Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol 5: R6. doi: 10.1186/gb-2003-5-1-r6
[36]  Dunn R, Dudbridge F, Sanderson CM (2005) The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinformatics 6: 39.
[37]  Jiang P, Singh M (2010) SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26: 1105–1111. doi: 10.1093/bioinformatics/btq078
[38]  King AD, Przulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20: 3013–3020. doi: 10.1093/bioinformatics/bth351
[39]  Luo F, Yang Y, Chen CF, Chang R, Zhou J, et al. (2007) Modular organization of protein interaction networks. Bioinformatics 23: 207–214. doi: 10.1093/bioinformatics/btl562
[40]  Navlakha S, Schatz MC, Kingsford C (2009) Revealing biological modules via graph summarization. J Comput Biol 16: 253–264. doi: 10.1089/cmb.2008.11tt
[41]  Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103: 8577–8582. doi: 10.1073/pnas.0601602103
[42]  Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54: 49–57. doi: 10.1002/prot.10505
[43]  Qi Y, Balem F, Faloutsos C, Klein-Seetharaman J, Bar-Joseph Z (2008) Protein complex identification by supervised graph local clustering. Bioinformatics 24: i250–258. doi: 10.1093/bioinformatics/btn164
[44]  Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci U S A 100: 1128–1133. doi: 10.1073/pnas.0237338100
[45]  Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100: 12123–12128. doi: 10.1073/pnas.2032324100
[46]  Wang C, Ding C, Yang Q, Holbrook SR (2007) Consistent dissection of the protein interaction network by combining global and local metrics. Genome Biol 8: R271. doi: 10.1186/gb-2007-8-12-r271
[47]  Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22: 2283–2290. doi: 10.1093/bioinformatics/btl370
[48]  Feng J, Jiang R, Jiang T (2011) A max-flow based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Trans Comput Biol Bioinform 8: 621–634. doi: 10.1109/tcbb.2010.78
[49]  Maraziotis IA, Dimitrakopoulou K, Bezerianos A (2007) Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 8: 408. doi: 10.1186/1471-2105-8-408
[50]  Tipney H, Hunter L (2010) An introduction to effective use of enrichment analysis software. Hum Genomics 4: 202–206. doi: 10.1186/1479-7364-4-3-202
[51]  Kim Y, Przytycka T (2012) Bridging the gap between genotype and phenotype via network approaches. Frontiers in Genetics special issue on mapping complex disease traits with global gene expression. Front Genet 3: 227. doi: 10.3389/fgene.2012.00227
[52]  Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1: S233–240. doi: 10.1093/bioinformatics/18.suppl_1.s233
[53]  O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, et al. (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485: 246–250. doi: 10.1038/nature10989
[54]  Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol 18: 507–522. doi: 10.1089/cmb.2010.0265
[55]  Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7: e1001273. doi: 10.1371/journal.pgen.1001273
[56]  Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70: 898–907. doi: 10.1016/j.neuron.2011.05.021
[57]  The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474: 609–615. doi: 10.1038/nature11453
[58]  Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, et al. (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70: 898–907. doi: 10.1016/j.neuron.2011.05.021
[59]  Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, et al. (2011) Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70: 886–897. doi: 10.1016/j.neuron.2011.05.015
[60]  Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, et al. (2011) Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7: e1001273 doi:10.1371/journal.pgen.1001273.
[61]  Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140. doi: 10.1038/msb4100180
[62]  Muller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, et al. (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455: 401–405. doi: 10.1038/nature07213
[63]  Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, et al. (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4: 169. doi: 10.1038/msb.2008.2
[64]  Wang K NI, Banerjee N, Margolin AA, Califano A. Genome-wide Discovery of Modulators of Transcriptional Interactions in Human B Lymphocytes; 2006; Venice. pp. 348–362.
[65]  Xue H, Xian B, Dong D, Xia K, Zhu S, et al. (2007) A modular network model of aging. Mol Syst Biol 3: 147. doi: 10.1038/msb4100189
[66]  Xia K, Xue H, Dong D, Zhu S, Wang J, et al. (2006) Identification of the proliferation/differentiation switch in the cellular network of multicellular organisms. PLoS Comput Biol 2: e145 doi:10.1371/journal.pcbi.0020145.
[67]  Ulitsky I, Krishnamurthy A, Karp RM, Shamir R (2010) DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS ONE 5: e13367 doi:10.1371/journal.pone.0013367.
[68]  Chowdhury SA, Koyuturk M (2010) Identification of coordinately dysregulated subnetworks in complex phenotypes. Pac Symp Biocomput 133–144. doi: 10.1142/9789814295291_0016
[69]  Kim YA, Wuchty S, Przytycka TM (2011) Identifying causal genes and dysregulated pathways in complex diseases. PLoS Comput Biol 7: e1001095 doi:10.1371/journal.pcbi.1001095.
[70]  Kim Y, Salari R, Wuchty S, Przytycka TM (2013) Module Cover – a new approach to genotype-phenotype studies;. Pacyfic Synposium on Biocomputing 18: 103–110. doi: 10.1142/9789814447973_0014
[71]  Vandin F, Upfal E, Raphael BJ (2012) De novo discovery of mutated driver pathways in cancer. Genome Res 22: 375–385. doi: 10.1101/gr.120477.111
[72]  Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, et al. (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1: e78 doi:10.1371/journal.pgen.0010078.
[73]  Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, et al. (2007) Population genomics of human gene expression. Nat Genet 39: 1217–1224. doi: 10.1038/ng2142
[74]  Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, et al. (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS ONE 3: e3802 doi:10.1371/journal.pone.0003802.
[75]  Shih YK, Parthasarathy S (2012) A single source k-shortest paths algorithm to infer regulatory pathways in a gene network. Bioinformatics 28: i49–58. doi: 10.1093/bioinformatics/bts212
[76]  Carter GW, Prinz S, Neou C, Shelby JP, Marzolf B, et al. (2007) Prediction of phenotype and gene expression for combinations of mutations. Mol Syst Biol 3: 96. doi: 10.1038/msb4100137
[77]  Bailly-Bechet M, Borgs C, Braunstein A, Chayes J, Dagkessamanskaia A, et al. (2011) Finding undetected protein associations in cell signaling by belief propagation. Proc Natl Acad Sci U S A 108: 882–887. doi: 10.1073/pnas.1004751108
[78]  Tuncbag N, McCallum S, Huang SS, Fraenkel E (2012) SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways. Nucleic Acids Res 40: W505–509. doi: 10.1093/nar/gks445
[79]  Tu Z, Wang L, Arbeitman MN, Chen T, Sun F (2006) An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics 22: e489–496. doi: 10.1093/bioinformatics/btl234
[80]  Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008) eQED: an efficient method for interpreting eQTL associations using protein networks. Mol Syst Biol 4: 162. doi: 10.1038/msb.2008.4
[81]  Yeger-Lotem E, Riva L, Su LJ, Gitler AD, Cashikar AG, et al. (2009) Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet 41: 316–323. doi: 10.1038/ng.337
[82]  Lee E, Jung H, Radivojac P, Kim JW, Lee D (2009) Analysis of AML genes in dysregulated molecular networks. BMC Bioinformatics 10 Suppl 9: S2. doi: 10.1186/1471-2105-10-s9-s2
[83]  Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82: 949–958. doi: 10.1016/j.ajhg.2008.02.013
[84]  Missiuro PV, Liu K, Zou L, Ross BC, Zhao G, et al. (2009) Information flow analysis of interactome networks. PLoS Comput Biol 5: e1000350 doi:10.1371/journal.pcbi.1000350.
[85]  Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21 Suppl 1: i302–310. doi: 10.1093/bioinformatics/bti1054
[86]  Newman M (2005) A measure of betweenness centrality based on random walks. Social Networks 27: 39–54. doi: 10.1016/j.socnet.2004.11.009
[87]  Stojmirovic A, Yu YK (2007) Information flow in interaction networks. J Comput Biol 14: 1115–1143. doi: 10.1089/cmb.2007.0069
[88]  Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6: e1000641 doi:10.1371/journal.pcbi.1000641.
[89]  Doyle PGSJ (1984) Random walks and electric networks. doi: 10.5948/upo9781614440222.004
[90]  Kim YA, Przytycki JH, Wuchty S, Przytycka TM (2011) Modeling information flow in biological networks. Phys Biol 8: 035012. doi: 10.1088/1478-3975/8/3/035012
[91]  Chowdhury SA, Nibbe RK, Chance MR, Koyuturk M (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18: 263–281. doi: 10.1089/cmb.2010.0269
[92]  Dao P, Colak R, Salari R, Moser F, Davicioni E, et al. (2010) Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26: i625–631. doi: 10.1093/bioinformatics/btq393
[93]  Dao P, Wang K, Collins C, Ester M, Lapuk A, et al. (2011) Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics 27: i205–213. doi: 10.1093/bioinformatics/btr245
[94]  Lee E, Chuang HY, Kim JW, Ideker T, Lee D (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4: e1000217 doi: 10.1371/journal.pcbi.1000217.
[95]  Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, et al. (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A 100: 11394–11399. doi: 10.1073/pnas.1534710100
[96]  Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, et al. (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6: e1000662 doi:10.1371/journal.pcbi.1000662.
[97]  Chu LH, Chen BS (2008) Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol 2: 56. doi: 10.1186/1752-0509-2-56
[98]  Nayak RR, Kearns M, Spielman RS, Cheung VG (2009) Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Res 19: 1953–1962. doi: 10.1101/gr.097600.109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133