A concise
and efficient method for the synthesis of novel 9,10-imethoxybenzo[6,7]oxepino[3,4-b]quinolin13(6H)-one and
its derivatives 7a-p has been developed via the
intramolecular Friedel-Crafts acylation reactions of 6,7-dimethoxy-2-(phenoxymethyl)quinoline-3-carboxylic
acids 6a-p with polyphosphoric
acid (PPA) as catalyst and solvent under mild conditions. The key intermediates
6a-p were prepared through the in situ formation of ethyl 6,7-dimethoxy-2-(phenoxymethyl)quinoline-3-carboxylates
5a-p followed by hydrolysis
with aqueous ethanolic sodium hydroxide
solution. The novel synthetic method has the advantages of good yields, easy
work-up, and environmentally friendly character, which may provide a novel
highly efficient process for making quinoline and related azaheterocycle
libraries.
References
[1]
R. D. Larsen, E. G. Corley, A. O. King, J. D. Carrol, P. Davis, T. R.Verhoeven, P. J. Reider, M. Labelle, J. Y. Gauthier, Y. B. Xiang and R. J. Zamboni, “Practical Route to a New Class of LTD4 Receptor Antagonists,” Journal of Organic Chemistry, Vol. 61, No. 10, 1996, pp. 3398-3405. doi:10.1021/jo952103j
[2]
Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu and C. C. Tzeng, “Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives,” Journal of Medicinal Chemistry, Vol. 44, No. 14, 2001, pp. 2374-2377.
doi:10.1021/jm0100335
[3]
J. P. Michael, “Quinoline, quinazoline and acridone alkaloids,” Natural Product Reports, Vol. 15, No. 6, 1998, pp. 595-606. doi:10.1039/a815595y
[4]
M. E. Zwaagstra, H. Timmerman, A. C. Van De Stolpe, F. J. De Kanter, M. Tamura, Y. Wada and M. Q. Zhang, “Synthesis and Structure-Activity relatIonships of Carboxyflavones as Structurally Rigid CysLT1 (LTD4) Receptor Antagonists,” Journal of Medicinal Chemistry, Vol. 41, No. 9, 1998, pp. 1428-1438.
doi:10.1021/jm970179x
[5]
A. Von Sprecher, M. Gerspacher, A. Beck, S. Kimmel, H. Wiestner, G. P. Anderson, U. Niederhauser, N. Subramanian and M. A. Bray, “Synthesis and SAR of a Novel, Potent and Structurally Simple LTD4 Antagonist of the Quinoline Class,” Bioorganic & Medicinal Chemistry Letters, Vol. 8, No. 8, 1998, pp. 965-970.
doi:10.1016/S0960-894X(98)00137-1
[6]
D. Doub`e, M. Blouin, C. Brideau. C. Chan, S. Desmarais, D. Ethier, J. P. Falgueyret, R. W. Friesen, M. Girard, Y. Girard, J. Guay, P. Tagari and R. N. Young, “Quinolines as Potent 5-Lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530,” Bioorganic & Medicinal Chemistry Letters, Vol. 8, No. 10, 1998, pp. 1255-1260. doi:10.1016/S0960-894X(98)00201-7
[7]
B. Vaitilingam, A. Nayyar, P. B. Palde, V. Monga, R. Jain, S. Kaur and P. P. Singh, “Synthesis and Antimyco-bacterial Activities of Ring-Substituted Quinolinecarboxylic Acid/Ester Analogues. Part 1,” Bioorganic & Medicinal Chemistry, Vol. 12, No. 15, 2004, pp. 4179-4188.
doi:10.1016/j.bmc.2004.05.018
[8]
Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu and C. C. Tzeng, “Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives,” Journal of Medicinal Chemistry, Vol. 44, No. 14, 2001, pp. 2374-2377.
doi:10.1021/jm0100335
[9]
G. Roma, M. D. Braccio, G. Grossi, F. Mattioli and M. Ghia, “1,8-Naphthyridines IV. 9-Substituted N, N-Dialkyl -5-(Alkylamino or Cycloalkylamino) [1,2,4]Triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, New Compounds with Anti-Aggressive and Potent Anti-Inflammatory Activities,” European Journal of Medicinal Chemistry, Vol. 35, No. 11, 2000, pp. 1021-1035.
doi:10.1016/S0223-5234(00)01175-2
[10]
Y. Morizawa, T. Okazoe, S.-Z. Wang, J. Sasaki, H. Ebisu, M. Nishikawa and H. Shinyama, “A Novel Trifluorome- thanesulfonamidophenyl-Substituted Quinoline Derivative, GA 0113: Synthesis and Pharmacological Profiles,” Journal of Fluorine Chemistry, Vol. 109, No. 1, 2001, pp. 83-86. doi:10.1016/S0022-1139(01)00383-9
[11]
P. L. Ferrarini, C. Mori, M. Badawneh, V. Calderonem, R. Greco, C. Manera, A. Martinelli, P. Nieri and G. Saccomanni, “Synthesis and β-Blocking Activity of (R,S)-(E)- Oximeethers of 2,3-Dihydro-1,8-naphthyridine and 2,3- Dihydrothiopyrano [2,3-b]Pyridine: Potential Antihypertensive Agents. Part IX,” European Journal of Medicinal Chemistry, Vol. 35, No. 9, 2000, pp. 815-826.
doi:10.1016/S0223-5234(00)00173-2
[12]
D.-Q. Yang, K.-L. Jiang, J.-N. Li and F. Xu, “Synthesis and Characterization of Quinoline Derivatives via the Friedländer Reaction,” Tetrahedron, Vol. 63, No. 32, 2007, pp. 7654-7658. doi:10.1016/j.tet.2007.05.037
[13]
Y.-Z. Hu, G. Zhang and R. P. Thummel, “Friedländer Approach for the Incorporation of 6-Bromoquinoline into Novel Chelating Ligands,” Organic Letter, Vol. 5, No. 13, 2003, pp. 2251-2253. doi:10.1021/ol034559q
[14]
A. Ohashi, A. Tsuguchi, H. Imura and K. Ohashi, “Synergistic Cloud Point Extraction Behavior of Alumi num(III) with 2-Methyl-8-quinolinol and 3,5-Dichlorophenol,” Analytical Sciences, Vol. 20, No. 7, 2004, pp. 1091-1093. doi:10.2116/analsci.20.1091
[15]
H. Wang, Z. Liu, C. Liu, D. Zhang, Z. Lu, H. Geng, Z. Shuai and D. Zhu, “Coordination Complexes of 2-(4-Quinolyl)nitronyl Nitroxide with M(hfac)2 [M = Mn(II), Co(II), and Cu(II)]: Syntheses, Crystal Structures, and Magnetic Characterization,” Inorganic Chemistry, Vol. 43, No. 13, 2004, pp. 4091-4098. doi:10.1021/ic049946q
[16]
C.-L. Chiang and C.-F. Shu, “Synthesis and Characterization of New Polyquinolines Containing 9,9‘-Spirobi- fluorene Units,” Chemistry of Materials, Vol. 14, No. 2, 2002, pp. 682-687. doi:10.1021/cm010665f
[17]
K. Nakatani, S. Sando and I. Saito, “Improved Selectivity for the Binding of Naphthyridine Dimer to Guanine- Guanine Mismatch,” Bioorganic & Medicinal Chemistry, Vol. 9, No. 9, 2001, pp. 2381-2385.
doi:10.1016/S0968-0896(01)00160-2
[18]
K. Nakatani, S. Sando and I. Saito, “Recognition of a Single Guanine Bulge by 2-Acylamino-1,8-naphthyridine,” American Chemical Society Publications, Vol. 122, No. 10, 2000, pp. 2172-2177. doi:10.1021/ja992956j
[19]
C. H. Nguyen, C. Marchand, S. Delane, J.-S. Sun, H. Garestier and E. Bisagni, “Synthesis of 13H-Benzo[6,7]- and 13H-Benzo[4,5]indolo[3,2-c]-quinolines: A New Series of Potent Specific Ligands for Triplex DNA,” American Chemical Society Publications, Vol. 120, No. 11, 1998, pp. 2501-2507. doi:10.1021/ja971707x
[20]
S.-X. Liu, Y.-J. Gao and G.-J. Jiang, “Synthesis of Benzoxepinoquinolinone,” Chemical Journal of Chinese Universities, Vol. 7, No. 12, 1986, pp. 1104-1108.
[21]
Y.-J. Gao, C.-J. Li and R.-S. Jiang, “Synthesis of New Benzoxepinoquinolinones,” Chinese Chemical Letters, Vol. 5, No. 9, 1994, pp. 727-728.
[22]
S. Chackal, R. Houssin and J. P. Henichart, “An Efficient Synthesis of the New Benzo[c]pyrido[2,3,4-kl]acridine Skeleton,” The Journal of Organic Chemistry, Vol. 67, No. 10, 2002, pp. 3502-3505. doi:10.1021/jo011057m
[23]
W. R. Bowman, C. F. Bridge, P. Brookes, M. O. Cloonan and D. C. Leach, “Cascade Radical Synthesis of Heteroarenes via Iminyl Radicals,” Journal of the Chemical Society, Perkin Transactions 1, No. 1, 2002, pp. 58-68.
doi:10.1039/b108323f
[24]
D.-Q. Yang, Y.-J. Gao and G.-J. Jiang, “Synthesis of Ethyl 2-Phenoxy (Thio) Methyl-6,7-methylenedioxy-3-quinolinecarboxylate and Its Derivatives,” Chinese Journal of Organic Chemistry, Vol. 14, 1994, pp. 626-629.
[25]
K. Lan, S. Fen and Z. X. Shan, “Synthesis of Aromatic Cycloketones via Intramolecular Friedel-Crafts Acylation Catalyzed by Heteropoly Acids,” Australian Journal of Chemistry, Vol. 60, No. 1, 2007, pp. 80-82.
doi:10.1071/CH06277
[26]
Y. Li, “Synthesis and Characterization of Histidine Modified Porphyrin,” Chemical Research, Vol. 19, No. 4, 2008, pp. 44-47.
[27]
C. Patteux, V. Levacher and G. Dupas, “A Novel Traceless Solid-Phase Friedländer Synthesis,” Organic Letters, Vol. 5, No. 17, 2003, pp. 3061-3063.
doi:10.1021/ol035049z