全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

DOI: 10.1155/2011/579518

Full-Text   Cite this paper   Add to My Lib

Abstract:

Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4?μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS). In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties. 1. Introduction The discoveries leading to information on novel drugs and drug combinations have become a priority to manage the increasing burden of malaria, caused by drug resistant parasites. Artemisinin derivative-based drug combinations that have independent mode of action are seen as a way of enhancing efficacy and simultaneously ensuring protection against resistance [1, 2] among the parasites. The anti-malarial properties of a tropical plant Andrographis paniculata has been studied in details recently by Mishra et al. [3], and also, there are several reports that demonstrate the antimalarial properties of the plant A. paniculata [4–6], but there is hardly any report that describe the active compound responsible for the anti-malarial property of this plant. Andrographolide, the diterpenic lactone compound, is one of the major phytoconstituents of the plant A. paniculata and has been reported to have diverse pharmacological potential including antiviral [7], anti-inflammatory [8–11], and anticancer properties [12]. The present study for the first time establishes andrographolide as the major bioactive anti-malarial constituent of the plant A. paniculata using both in vitro and in vivo approaches. The encouraging in vitro antiplasmodial activities of andrographolide prompted us to evaluate the interaction of andrographolide (AND) with other established anti-malarial compounds such as curcumin (CUR) and artesunate (AS), the hemisuccinate derivative of artemisinin in vitro on Plasmodium falciparum, and in vivo on Plasmodium berghei ANKA strains. This adds new information on combination of potent anti-malarial

References

[1]  WHO facts on ACTs (Artemisinin-Based Combination Therapies) , http://www.rollbackmalaria.org/cmc_upload/0/000/015/364/RBMInfosheet_9.htm.
[2]  P. L. Olliaro and W. R. J. Taylor, “Antimalarial compounds: from bench to bedside,” Journal of Experimental Biology, vol. 206, no. 21, pp. 3753–3759, 2003.
[3]  K. Mishra, A. P. Dash, B. K. Swain, and N. Dey, “Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin,” Malaria Journal, vol. 8, no. 1, article no. 26, 2009.
[4]  N. N. N. A. Rahman, T. Furuta, S. Kojima, K. Takane, and M. Ali Mohd, “Antimalarial activity of extracts of Malaysian medicinal plants,” Journal of Ethnopharmacology, vol. 64, no. 3, pp. 249–254, 1999.
[5]  M. J. Siti Najila, A. Noor Rain, A. G. Mohamad Kamel et al., “The screening of extracts from Goniothalamus scortechinii, Aralidium pinnatifidum and Andrographis paniculata for anti-malarial activity using the lactate dehydrogenase assay,” Journal of Ethnopharmacology, vol. 82, no. 2-3, pp. 239–242, 2002.
[6]  V. K. Dua, V. P. Ojha, R. Roy et al., “Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata,” Journal of Ethnopharmacology, vol. 95, no. 2-3, pp. 247–251, 2004.
[7]  J. T. Coon and E. Ernst, “Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy,” Planta Medica, vol. 70, no. 4, pp. 293–298, 2004.
[8]  S. Habtemariam, “Andrographolide inhibits the tumour necrosis factor-α-induced upregulation of ICAM-1 expression and endothelial-monocyte adhesion,” Phytotherapy Research, vol. 12, no. 1, pp. 37–40, 1998.
[9]  M. A. Hidalgo, A. Romero, J. Figueroa et al., “Andrographolide interferes with binding of nuclear factor-κB to DNA in HL-60-derived neutrophilic cells,” British Journal of Pharmacology, vol. 144, no. 5, pp. 680–686, 2005.
[10]  D. Pekthong, H. Martin, C. Abadie et al., “Differential inhibition of rat and human hepatic cytochrome P450 by Andrographis paniculata extract and andrographolide,” Journal of Ethnopharmacology, vol. 115, no. 3, pp. 432–440, 2007.
[11]  R. Subramanian, M. Z. Asmawi, and A. Sadikun, “In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide,” Acta Biochimica Polonica, vol. 55, no. 2, pp. 391–398, 2008.
[12]  H. Ying, LI. M. Bu, X. Ji, C. Y. Liu, and Z. H. Wang, “Modulation of multidrug resistance by andrographolid in a HCT-8/5-FU multidrug-resistant colorectal cancer cell line,” Chinese Journal of Digestive Diseases, vol. 6, no. 2, pp. 82–86, 2005.
[13]  W. Trager and J. B. Jensen, “Human malaria parasites in continuous culture,” Science, vol. 193, no. 4254, pp. 673–675, 1976.
[14]  C. Lambros and J. P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic stages in culture,” Journal of Parasitology, vol. 65, no. 3, pp. 418–420, 1979.
[15]  K. Mishra, D. Chakraborty, A. Pal, and N. Dey, “Plasmodium falciparum: in vitro interaction of quassin and neo-quassin with artesunate, a hemisuccinate derivative of artemisinin,” Experimental Parasitology, vol. 124, no. 4, pp. 421–427, 2010.
[16]  J. Wiesner, D. Henschker, D. B. Hutchinson, E. Beck, and H. Jomaa, “In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 9, pp. 2889–2894, 2002.
[17]  M. Bonfill, S. Mangas, R. M. Cusidó, L. Osuna, M. T. Pi?ol, and J. Palazón, “Identification of triterpenoid compounds of Centella asiatica by thin-layer chromatography and mass spectrometry,” Biomedical Chromatography, vol. 20, no. 2, pp. 151–153, 2006.
[18]  S. M. Mandal and S. Dey, “LC-MALDI-TOF MS-based rapid identification of phenolic acids,” Journal of Biomolecular Techniques, vol. 19, no. 2, pp. 116–121, 2008.
[19]  M. C. Berenbaum, “A method for testing for synergy with any number of agents,” Journal of Infectious Diseases, vol. 137, no. 2, pp. 122–130, 1978.
[20]  C. D. Goodman, V. Su, and G. I. McFadden, “The effects of anti-bacterials on the malaria parasite Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 152, no. 2, pp. 181–191, 2007.
[21]  A. K. Tripathi, W. Sha, V. Shulaev, M. F. Stins, and D. J. Sullivan Jr., “Plasmodium falciparum-infected erythrocytes induce NF-κB regulated inflammatory pathways in human cerebral endothelium,” Blood, vol. 114, no. 19, pp. 4243–4252, 2009.
[22]  D. N. Nandakumar, V. A. Nagaraj, P. G. Vathsala, P. Rangarajan, and G. Padmanaban, “Curcumin-artemisinin combination therapy for malaria,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 5, pp. 1859–1860, 2006.
[23]  Q. L. Fivelman, I. S. Adagu, and D. C. Warhurst, “Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 11, pp. 4097–4102, 2004.
[24]  L. Cui, J. Miao, and L. Cui, “Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 2, pp. 488–494, 2007.
[25]  W. F. Chiou, C. F. Chen, and J. J. Lin, “Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide,” British Journal of Pharmacology, vol. 129, no. 8, pp. 1553–1560, 2000.
[26]  M. Carraz, A. Jossang, J. F. Franetich et al., “A plant-derived morphinan as a novel lead compound active against malaria liver stages,” PLoS Medicine, vol. 3, no. 12, pp. 2392–2402, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133