Elimination of lymphatic filariasis (LF) in the Pacific Island Countries and Territories (PICT) has been defined as <0.1% circulating filarial antigen (CFA) prevalence in children born after the implementation of successful mass drug administrations (MDAs). This research assessed the feasibility of CFA and antibody testing in three countries; Tonga, Vanuatu, and Samoa. Transmission is interrupted in Vanuatu and Tonga as evidenced by no CFA positive children and a low antibody prevalence and titre. Transmission is ongoing in Samoa with microfilaraemic (Mf) and CFA positive children and a high antibody prevalence and titre. Furthermore, areas of transmission were identified with Mf positive adults, but no CFA positive children. These areas had a high antibody prevalence in children. In conclusion, CFA testing in children alone was not useful for identifying areas of residual endemicity in Samoa. Thus, it would be beneficial to include antibody serology in the PICT surveillance strategy. 1. Introduction Lymphatic filariasis (LF), a mosquito-transmitted parasitic disease caused by the filarial nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, is classified as a neglected tropical disease (NTD) that is endemic in many parts of the world including the South Pacific [1–3]. The Global Elimination Programme to eliminate LF (GPELF) began in the late 1990s, and the Pacific counterpart of GPELF, formed in 1999 under the auspices of the World Health Organization (WHO), was named the Pacific Programme for the Elimination of Lymphatic Filariasis (PacELF) [4, 5]. PacELF resolved to eliminate LF as a public health problem in the Pacific using mass drug administrations (MDAs) [5]. Elimination of LF was defined as <1% circulating filarial antigen (CFA) prevalence of the population and <0.1% CFA prevalence in children born after the implementation of MDAs [6]. Sixteen of the 22 countries falling under the jurisdiction of PacELF were classified as endemic for LF following baseline prevalence surveys. They were American Samoa, the Cook Islands, the Federated States of Micronesia, Fiji, French Polynesia, Kiribati, the Marshall Islands, New Caledonia, Niue, Palau, Papua New Guinea, Samoa, Tonga, Tuvalu, Vanuatu, and Wallis and Futuna [7]. The Cook Islands, Niue, Vanuatu, and Tonga have reached <1% CFA prevalence of the population following five rounds of MDA and are now implementing activities to ensure that transmission has been interrupted and to detect any remaining and/or new foci of transmission [8]. The challenge for this phase of the LF programme is to
References
[1]
P. J. Lammie, A. Fenwick, and J. Utzinger, “A blueprint for success: integration of neglected tropical disease control programmes,” Trends in Parasitology, vol. 22, no. 7, pp. 313–321, 2006.
[2]
E. Michael and D. A. P. Bundy, “Global mapping of lymphatic filariasis,” Parasitology Today, vol. 13, no. 12, pp. 472–476, 1997.
[3]
E. A. Ottesen, “Lymphatic filariasis: treatment, control and elimination,” Advances in Parasitology, vol. 61, pp. 395–441, 2006.
[4]
K. Ichimori and A. Crump, “Pacific collaboration to eliminate lymphatic filariasis,” Trends in Parasitology, vol. 21, no. 10, pp. 441–444, 2005.
[5]
K. Ichimori, P. M. Graves, and A. Crump, “Lymphatic filariasis elimination in the Pacific: PacELF replicating Japanese success,” Trends in Parasitology, vol. 23, no. 1, pp. 36–40, 2007.
[6]
WHO, “Monitoring and epidemiological assessment of the programme to eliminate lymphatic filariasis at implementation unit level,” Tech. Rep. WHO/CDS/CPE/CEE 2005.50, World Health Organization, 2005.
[7]
WHO, “Report of the 9th workshop for Pacific lymphatic filariasis programme managers,” Tech. Rep. RS/2007/GE/20, World Health Organization, Fiji, 2007.
[8]
C. Huppatz, C. Capuano, K. Palmer, P. M. Kelly, and D. N. Durrheim, “Lessons from the Pacific programme to eliminate lymphatic filariasis: a case study of 5 countries,” BMC Infectious Diseases, vol. 9, no. 1, article 92, 2009.
[9]
C. A. Grady, M. B. De Rochars, A. N. Direny et al., “Endpoints for lymphatic filariasis programs,” Emerging Infectious Diseases, vol. 13, no. 4, pp. 608–610, 2007.
[10]
D. H. Molyneux, “Filaria control and elimination: diagnostic, monitoring and surveillance needs,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 103, no. 4, pp. 338–341, 2009.
[11]
S. M. Njenga, C. N. Wamae, C. S. Mwandawiro, and D. H. Molyneux, “Immuno-parasitological assessment of bancroftian filariasis in a highly endemic area along the River Sabaki, in Malindi district, Kenya,” Annals of Tropical Medicine and Parasitology, vol. 101, no. 2, pp. 161–172, 2007.
[12]
S. Chanteau, J. P. Moulia-Pelat, P. Glaziou et al., “Og4C3 circulating antigen: a marker of infection and adult worm burden in Wuchereria bancrofti filariasis,” Journal of Infectious Diseases, vol. 170, no. 1, pp. 247–250, 1994.
[13]
A. Rocha, D. Addiss, M. E. Ribeiro et al., “Evaluation of the Og4C3 ELISA in Wuchereria bancrofti infection: infected persons with undetectable or ultra-low microfilarial densities,” Tropical Medicine and International Health, vol. 1, no. 6, pp. 859–864, 1996.
[14]
C. H. Washington, J. Radday, T. G. Streit et al., “Spatial clustering of filarial transmission before and after a Mass Drug Administration in a setting of low infection prevalence,” Filaria Journal, vol. 3, no. 1, article 3, 2004.
[15]
D. N. Durrheim, T. Nelesone, R. Speare, and W. Melrose, “Certifying lymphatic filariasis elimination in the Pacific—the need for new tools,” Pacific Health Dialog, vol. 10, no. 2, pp. 149–154, 2003.
[16]
W. D. Melrose, D. D. Durrheim, and G. W. Burgess, “Update on immunological tests for lymphatic filariasis,” Trends in Parasitology, vol. 20, no. 6, pp. 255–257, 2004.
[17]
P. J. Lammie, G. Weil, R. Noordin et al., “Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis—a multicenter trial,” Filaria Journal, vol. 3, no. 1, article 9, 2004.
[18]
R. M. R. Ramzy, M. El Setouhy, H. Helmy et al., “Effect of yearly mass drug administration with diethylcarbamazine and albendazole on bancroftian filariasis in Egypt: a comprehensive assessment,” The Lancet, vol. 367, no. 9515, pp. 992–999, 2006.
[19]
S. M. Njenga, C. N. Wamae, D. W. Njomo, C. S. Mwandawiro, and D. H. Molyneux, “Impact of two rounds of mass treatment with diethylcarbamazine plus albendazole on Wuchereria bancrofti infection and the sensitivity of immunochromatographic test in Malindi, Kenya,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 10, pp. 1017–1024, 2008.
[20]
C. L. Gao, W. C. Cao, and X. X. Chen, “Changes in anti-filarial antibody after control of filariasis in Shandong Province,” Chinese Medical Journal, vol. 107, no. 5, pp. 360–363, 1994.
[21]
T. Supali, N. Rahmah, Y. Djuardi, E. Sartono, P. Rückert, and P. Fischer, “Detection of filaria-specific IgG4 antibodies using Brugia Rapid test in individuals from an area highly endemic for Brugia timori,” Acta Tropica, vol. 90, no. 3, pp. 255–261, 2004.
[22]
J. M. Mladonicky, J. D. King, J. L. Liang et al., “Assessing transmission of lymphatic filariasis using parasitologic, serologic, and entomologic tools after mass drug administration in American Samoa,” American Journal of Tropical Medicine and Hygiene, vol. 80, no. 5, pp. 769–773, 2009.
[23]
C. Huppatz, D. Durrheim, P. Lammie, P. Kelly, and W. Melrose, “Eliminating lymphatic filariasis—the surveillance challenge,” Tropical Medicine and International Health, vol. 13, no. 3, pp. 292–294, 2008.
[24]
P. J. Lammie, M. D. Reiss, K. A. Dimock, T. G. Streit, J. M. Roberts, and M. L. Eberhard, “Longitudinal analysis of the development of filarial infection and antifilarial immunity in a cohort of Haitian children,” American Journal of Tropical Medicine and Hygiene, vol. 59, no. 2, pp. 217–221, 1998.
[25]
G. J. Weil and R. M. R. Ramzy, “Diagnostic tools for filariasis elimination programs,” Trends in Parasitology, vol. 23, no. 2, pp. 78–82, 2007.
[26]
R. M. R. Ramzy, H. Helmy, R. Faris, A. M. Gad, R. Chandrashekar, and G. J. Weil, “Evaluation of a recombinant antigen-based antibody assay for diagnosis of bancroftian filariasis in Egypt,” Annals of Tropical Medicine and Parasitology, vol. 89, no. 4, pp. 443–446, 1995.
[27]
G. J. Weill, W. Kastens, M. Susapu et al., “The impact of repeated rounds of mass drug-administration with diethylcarbamazine plus albendazole on bancroftian filariasis in Papua New Guinea,” PLoS Neglected Tropical Diseases, vol. 2, no. 12, article e344, 2008.
[28]
H. M. Joseph and W. D. Melrose, “Applicability of the filter paper technique for detection of antifilarial IgG4 antibodies using the Bm14 Filariasis CELISA,” Journal of Parasitology Research, vol. 2010, Article ID 594687, 6 pages, 2010.
[29]
G. J. Weil, K. C. Curtis, P. U. Fischer et al., “A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14,” Acta Tropica. In press.
[30]
M. Booth, B. J. Vennervald, L. C. Kenty et al., “Micro-geographical variation in exposure to Schistosoma mansoni and malaria, and exacerbation of splenomegaly in Kenyan school-aged children,” BMC Infectious Diseases, vol. 4, article 13, 2004.
[31]
T. R. Burkot, G. Taleo, V. Toeaso, and K. Ichimori, “Progress towards, and challenges for, the elimination of filariasis from Pacific-island communities,” Annals of Tropical Medicine and Parasitology, vol. 96, supplement 2, pp. S61–69, 2002.
[32]
K. Ichimori, P. Tupuimalagi-Toelupe, V. T. Iosia, and P. Graves, “Wuchereria bancrofti filariasis control in Samoa before PacELF (Pacific Programme to Eliminate Lymphatic Filariasis),” Tropical Medicine and Health, vol. 35, no. 3, pp. 261–269, 2007.
[33]
M. Booth and D. W. Dunne, “Spatial awareness in parasite immuno-epidemiology,” Parasite Immunology, vol. 26, no. 11-12, pp. 499–507, 2004.
[34]
G. J. Weil, P. J. Lammie, and N. Weiss, “The ICT filariasis test: a rapid-format antigen test for diagnosis of bancroftian filariasis,” Parasitology Today, vol. 13, no. 10, pp. 401–404, 1997.
[35]
M. Sasa, Human Filariasis: A Global Survey of Epidemiology and Control, University Park Press, Baltimore, Md, USA, 1976.
[36]
S. Ramalingam, “The epidemiology of filarial transmission in Sanoa and Tonga,” Annals of Tropical Medicine and Parasitology, vol. 62, no. 3, pp. 305–324, 1968.
[37]
J. S. Dylewski, L. Rasmussen, J. Mills, and T. C. Merigan, “Large-scale serological screening for cytomegalovirus antibodies in homosexual males by enzyme-linked immunosorbent assay,” Journal of Clinical Microbiology, vol. 19, no. 2, pp. 200–203, 1984.
[38]
E. C. De Haas, A. Di Pietro, K. L. Simpson et al., “Clinical evaluation of M30 and M65 ELISA cell death assays as circulating biomakers in a drug-sensitive tumor, testicular cancer,” Neoplasia, vol. 10, no. 10, pp. 1041–1048, 2008.
[39]
H. Joseph, J. Moloney, F. Maiava, S. McClintock, P. Lammie, and W. Melrose, “First evidence of spatial clustering of lymphatic filariasis in an Aedes polynesiensis endemic area,” Acta Tropica. In press.
[40]
G. J. Weil, R. M. R. Ramzy, M. El Setouhy, A. M. Kandil, E. S. Ahmed, and R. Faris, “A longitudinal study of Bancroftian filariasis in the Nile Delta of Egypt: baseline data and one-year follow-up,” American Journal of Tropical Medicine and Hygiene, vol. 61, no. 1, pp. 53–58, 1999.
[41]
D. Kyelem, G. Biswas, M. J. Bockarie et al., “Determinants of success in national programs to eliminate lymphatic filariasis: a perspective identifying essential elements and research needs,” American Journal of Tropical Medicine and Hygiene, vol. 79, no. 4, pp. 480–484, 2008.
[42]
H. Joseph, A. Clough, A. Peteru, et al., “Exploratory study investigating factors influencing mass drug administration (MDA) compliance for lymphatic filariasis in Samoa,” Samoa Medical Journal, vol. 2, no. 3, pp. 12–25, 2010.