全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The role of surface defects in HOPG on the electrochemical and physical deposition of Ag

Keywords: surface defects , electrodeposition , silver , HOPG , scanning tunneling microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The role of defects on a substrate surface during the initial stages of nucleation and growth of Ag deposited electrochemically and physically on highly oriented pyrolytic graphite (HOPG) has been observed ex situ by scanning tunneling microscopy (STM). The silver was electrodeposited under current controlled electrochemical conditions at 26 μA/cm2, which corresponded to a deposition rate of 0.1 monolayers (ML) per second. For comparison, physical deposition of Ag on HOPG was performed by DC Ar+ ion sputtering, at the same deposition rate and for the same deposition times. In both cases, Ag grows in an island growth mode, but the distribution of the islands appears to be quite different. In physical deposition, the Ag islands are almost homogeneously distributed over the substrate surface and a slight accumulation of islands on steps does not contribute significantly to the overall morphology. This indicates the crucial role of point defects on the substrate in the initial stages of nucleation. In electrochemical deposition, more lined defects are observed after a flow of current, and their role in the beginning of the nucleation is more pronounced. Lined defects are responsible for the string-like shaped domains of deposited atoms. Also, the existence of string-like shaped nucleation exclusion zones is indicated. The problem of the formation of nucleation exclusion zones, which appear only in electrochemical deposition, has been reconsidered and a new explanaton of their formation is given. A mathematical model for the calculation of the radius of the nucleation exclusion zone has been developed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133