Background. A phase 3 study demonstrated the safety and efficacy of paromomycin (paromomycin IM injection) for treatment of VL in an inpatient setting. Methods. This phase 4 study was conducted to assess the safety and efficacy of paromomycin in children and adults in an outpatient setting in Bihar, India. Results. This study enrolled 506 adult and pediatric patients. Of the 494 patients in the intent-to-treat (ITT) population, 98% received a full course of treatment. The overall study completion rate was 94% (462/494) for the ITT population and 96% (461/479) for the efficacy-evaluable (EE) population. Initial clinical cure was 99.6%, and final clinical cure 6 months after treatment was 94.2%. Grade 3 or 4 adverse events occurred in 5% of patients; events with a frequency of ≥1% were increases in alanine aminotransferase and aspartate aminotransferase. Conclusions. This study confirms the safety and efficacy of paromomycin to treat VL in an outpatient setting. 1. Introduction Safe, effective, affordable, and accessible treatments are urgently needed for underserved populations in developing nations who are afflicted with one of the most neglected diseases: visceral leishmaniasis (VL), or kala-azar in South Asia. VL is endemic in 68 countries, primarily in the developing world, with an estimated at-risk population of 200 million [1]. As a systemic disease, VL causes chronic and irregular fever, weight loss, splenomegaly, hepatomegaly (less frequently), and anemia. If left untreated, VL is almost always fatal. New drugs are required for the treatment of VL partly because of the expansion of drug-resistant organisms [2–5]. Antimonials, which were historically the therapeutic mainstay for treating VL, have decreased effectiveness, especially in Bihar, India, where, in some cases, up to 65% of patients are estimated to fail antimonial treatment [3]. Pentamidine is toxic and has lost its initially high level of efficacy; it is no longer a recommended alternative treatment for VL [6]. The oral drug miltefosine is expensive and teratogenic, requiring the coadministration of oral contraceptives for 3 months in women of child-bearing age [7]. Although highly effective, amphotericin B is expensive, must be infused IV over 6 hours, is associated with fever, chills, and rigor, can be nephrotoxic, and requires close clinical and laboratory monitoring with hospitalization. Studies with lipid formulations of amphotericin B, such as AmBisome or Abelcet, have shown excellent results both in terms of safety and efficacy. A recent study showed that AmBisome (liposomal
References
[1]
J. P. Narain, A. P. Dash, B. Parnell et al., “Elimination of neglected tropical diseases in the South-East Asia Region of the World Health Organization,” Bulletin of the World Health Organization, vol. 88, no. 3, pp. 206–210, 2010.
[2]
R. Lira, S. Sundar, A. Makharia et al., “Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani,” Journal of Infectious Diseases, vol. 180, no. 2, pp. 564–567, 1999.
[3]
S. Sundar, D. K. More, M. K. Singh et al., “Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic,” Clinical Infectious Diseases, vol. 31, no. 4, pp. 1104–1107, 2000.
[4]
C. P. Thakur, S. Narayan, and A. Ranjan, “Epidemiological, clinical & pharmacological study of antimony-resistant visceral leishmaniasis in Bihar, India,” Indian Journal of Medical Research, vol. 120, no. 3, pp. 166–172, 2004.
[5]
V. N. R. Das, A. Ranjan, S. Bimal et al., “Magnitude of unresponsiveness to sodium stibogluconate in the treatment of visceral leishmaniasis in Bihar,” National Medical Journal of India, vol. 18, no. 3, pp. 131–133, 2005.
[6]
World Health Organization, WHO Model List of Essential Medicines, World Health Organization, Geneva, Switzerland, 16th edition, 2010.
[7]
S. Sundar, T. K. Jha, C. P. Thakur et al., “Oral miltefosine for Indian visceral leishmaniasis,” The New England Journal of Medicine, vol. 347, no. 22, pp. 1739–1746, 2002.
[8]
S. Sundar, J. Chakravarty, D. Agarwal, M. Rai, and H. W. Murray, “Single-dose liposomal amphotericin B for visceral leishmaniasis in India,” The New England Journal of Medicine, vol. 362, no. 6, pp. 504–512, 2010.
[9]
T. K. Jha, P. Olliaro, C. P. N. Thakur et al., “Randomised controlled trial of aminosidine (paromomycin) v sodium stibogluconate for treating visceral leishmaniasis in North Bihar, India,” British Medical Journal, vol. 316, no. 7139, pp. 1200–1205, 1998.
[10]
C. P. Thakur, T. P. Kanyok, A. K. Pandey et al., “A prospective randomized, comparative, open-label trial of the safety and efficacy of paromomycin (aminosidine) plus sodium stibogluconate versus sodium stibogluconate alone for the treatment of visceral leishmaniasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 4, pp. 429–431, 2000.
[11]
S. Sundar, T. K. Jha, C. P. Thakur, P. K. Sinha, and S. K. Bhattacharya, “Injectable paromomycin for visceral leishmaniasis in India,” The New England Journal of Medicine, vol. 356, no. 25, pp. 2571–2581, 2007.
[12]
World Health Organization, WHO Model List of Essential Medicines, World Health Organization, Geneva, Switzerland, 15th edition, 2007.
[13]
World Health Organization, WHO Model List of Essential Medicines for Children, World Health Organization, Geneva, Switzerland, 2nd edition, 2007.
[14]
WHO, “Control of the leishmaniasis: report of a meeting of the WHO expert Committee on the Control of Leishmaniasis,” Tech. Rep. 949, WHO Technical Report Series, Geneva, Switzerland, 2010.
[15]
T. K. Jha, S. Sundar, C. P. Thakur et al., “Miltefosine, an oral agent, for the treatment of indian visceral leishmaniasis,” The New England Journal of Medicine, vol. 341, no. 24, pp. 1795–1800, 1999.
[16]
S. Sundar, M. Rai, J. Chakravarty et al., “New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin b followed by short-course oral miltefosine,” Clinical Infectious Diseases, vol. 47, no. 8, pp. 1000–1006, 2008.
[17]
S. K. Bhattacharya, P. K. Sinha, S. Sundar et al., “Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis,” Journal of Infectious Diseases, vol. 196, no. 4, pp. 591–598, 2007.
[18]
A. E. Czeizel, M. Rockenbauer, J. Olsen, and H. T. Sorensen, “A teratological study of aminoglycoside antibiotic treatment during pregnancy,” Scandinavian Journal of Infectious Diseases, vol. 32, no. 3, pp. 309–313, 2000.
[19]
F. Arcamone, C. Bertazzoli, A. Buogo, et al., Product's Profile: Aminosidine, Gruppo Montedison, Farmitalia, Ed. 011076, 1976.
[20]
A. Di Marco and C. Bertazzoli, “Pharmacology of new basic oligosaccharide antibiotics,” in Proceedings of the 2nd International Chemotherapy Symposium, vol. 1, pp. 2–20, Naples, Italy, 1961.