全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Small GTPase Rap1b: A Bidirectional Regulator of Platelet Adhesion Receptors

DOI: 10.1155/2012/412089

Full-Text   Cite this paper   Add to My Lib

Abstract:

Integrins and other families of cell adhesion receptors are responsible for platelet adhesion and aggregation, which are essential steps for physiological haemostasis, as well as for the development of thrombosis. The modulation of platelet adhesive properties is the result of a complex pattern of inside-out and outside-in signaling pathways, in which the members of the Rap family of small GTPases are bidirectionally involved. This paper focuses on the regulation of the main Rap GTPase expressed in circulating platelets, Rap1b, downstream of adhesion receptors, and summarizes the most recent achievements in the investigation of the function of this protein as regulator of platelet adhesion and thrombus formation. 1. Introduction The adhesion of circulating blood platelets to the subendothelial matrix exposed upon vessel wall injury represents the initial event of the haemostatic process required to limit hemorrhage. Platelets express several membrane receptors specific for all the major adhesive ligands of the vascular extracellular matrix [1]. Among these, collagen is probably the most important subendothelial matrix component involved in thrombus formation, and platelet adhesion to collagen is associated with a complex pattern of activatory signaling pathways. Integrin α2β1 and glycoprotein VI (GPVI) are the two main platelet receptors for collagen and, in the rheological conditions of low shear rates, typically present in large veins and venules, are sufficient to mediate firm platelet adhesion. At high shear rates, characteristic of small arteries and stenotic vessels, platelets are unable to efficiently interact to exposed collagen fibers, and in these conditions adhesion is preceded by platelet tethering and rolling on the site of injury. This process is mediated by the membrane GPIb-IX-V complex, a platelet-specific receptor for the multimeric glycoprotein von Willebrand factor (VWF). At high shear stress, circulating VWF rapidly interacts with exposed collagen fibers and undergoes a conformational change that allows the interaction with the GPIb-XI-V complex, decelerating platelets and favoring the subsequent stable adhesion mediated by other platelet receptors [2]. The interaction of platelet adhesion receptors with subendothelial matrix components stimulates an intricate pattern of signal transduction pathways, that trigger spreading, secretion of soluble proaggregating molecules, thromboxane A2 (TxA2) synthesis and release, and phosphatydilserine exposure. These events recruit and activate additional circulating platelets to initiate a

References

[1]  R. W. Farndale, P. R. M. Siljander, D. J. Onley, P. Sundaresan, C. G. Knight, and M. J. Barnes, “Collagen-platelet interactions: recognition and signalling,” Biochemical Society Symposium, no. 70, pp. 81–94, 2003.
[2]  K. Broos, H. B. Feys, S. F. De Meyer, K. Vanhoorelbeke, and H. Deckmyn, “Platelets at work in primary hemostasis,” Blood Reviews, vol. 25, no. 4, pp. 155–167, 2011.
[3]  S. Carrasco and I. Mérida, “Diacylglycerol, when simplicity becomes complex,” Trends in Biochemical Sciences, vol. 32, no. 1, pp. 27–36, 2007.
[4]  Z. Li, M. K. Delaney, K. A. O'Brien, and X. Du, “Signaling during platelet adhesion and activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 12, pp. 2341–2349, 2010.
[5]  D. S. Woulfe, “Platelet G protein-coupled receptors in hemostasis and thrombosis,” Journal of Thrombosis and Haemostasis, vol. 3, no. 10, pp. 2193–2200, 2005.
[6]  F. J. T. Zwartkruis and J. L. Bos, “Ras and Rap1: two highly related small GTPases with distinct function,” Experimental Cell Research, vol. 253, no. 1, pp. 157–165, 1999.
[7]  E. G. Lapetina, J. Carlos Lacal, B. R. Reep, and L. Molina y Vedia, “A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 9, pp. 3131–3134, 1989.
[8]  T. E. White, J. C. Lacal, B. Reep, T. H. Fischer, E. G. Lapetina, and G. C. White, “Thrombolamban, the 22-kDa platelet substrate of cyclic AMP-dependent protein kinase, is immunologically homologous with the Ras family of GTP-binding proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 2, pp. 758–762, 1990.
[9]  P. G. Polakis, R. F. Weber, B. Nevins, J. R. Didsbury, T. Evans, and R. Snyderman, “Identification of the ral and rac1 gene products, low molecular mass GTP-binding proteins from human platelets,” The Journal of Biological Chemistry, vol. 264, no. 28, pp. 16383–16389, 1989.
[10]  Y. Nemoto, T. Namba, T. Teru-uchi, F. Ushikubi, N. Morii, and S. Narumiya, “A rho gene product in human blood platelets. I. Identification of the platelet substrate for botulinum C3 ADP-ribosyltransferase as rhoA protein,” The Journal of Biological Chemistry, vol. 267, no. 29, pp. 20916–20920, 1992.
[11]  P. G. Polakis, R. Snyderman, and T. Evans, “Characterization of G25K, a GTP-binding protein containing a novel putative nucleotide binding domain,” Biochemical and Biophysical Research Communications, vol. 160, no. 1, pp. 25–32, 1989.
[12]  M. Torti and E. G. Lapetina, “Structure and function of rap proteins in human platelets,” Thrombosis and Haemostasis, vol. 71, no. 5, pp. 533–543, 1994.
[13]  E. Caron, “Cellular functions of the Rap1 GTP-binding protein: a pattern emerges,” Journal of Cell Science, vol. 116, pp. 435–440, 2003.
[14]  G. M. Bokoch, “Biology of the Rap proteins, members of the ras superfamily of GTP-binding proteins,” Biochemical Journal, vol. 289, pp. 17–24, 1993.
[15]  Y. Takai, T. Sasaki, and T. Matozaki, “Small GTP-binding proteins,” Physiological Reviews, vol. 81, no. 1, pp. 153–208, 2001.
[16]  S. Paganini, G. F. Guidetti, S. Catricalà et al., “Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins,” Biochimie, vol. 88, no. 3-4, pp. 285–295, 2006.
[17]  Z. Fu, S. H. Lee, A. Simonetta, J. Hansen, M. Sheng, and D. T. S. Pak, “Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons,” Journal of Neurochemistry, vol. 100, no. 1, pp. 118–131, 2007.
[18]  R. L. Stornetta and J. J. Zhu, “Ras and Rap signaling in synaptic plasticity and mental disorders,” Neuroscientist, vol. 17, no. 1, pp. 54–78, 2011.
[19]  I. Canobbio, P. Trionfini, G. F. Guidetti, C. Balduini, and M. Torti, “Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets,” Cellular Signalling, vol. 20, no. 9, pp. 1662–1670, 2008.
[20]  F. J. Klinz, R. Seifert, I. Schwaner, H. Gausepohl, R. Frank, and G. Schultz, “Generation of specific antibodies against the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of rap and ras proteins in membranes frome mammalian cells,” European Journal of Biochemistry, vol. 207, no. 1, pp. 207–213, 1992.
[21]  M. Torti, G. Ramaschi, F. Sinigaglia, E. G. Lapetina, and C. Balduini, “Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 16, pp. 7553–7557, 1993.
[22]  M. Torti, G. Ramaschi, F. Sinigaglia, E. G. Lapetina, and C. Balduini, “Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 10, pp. 4239–4243, 1994.
[23]  M. Torti, A. Bertoni, I. Canobbio, F. Sinigaglia, E. G. Lapetina, and C. Balduini, “Rap1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves FCγII receptor-mediated protein tyrosine phosphorylation,” The Journal of Biological Chemistry, vol. 274, no. 19, pp. 13690–13697, 1999.
[24]  F. Greco, F. Sinigaglia, C. Balduini, and M. Torti, “Activation of the small GTPase Rap2B in agonist-stimulated human platelets,” Journal of Thrombosis and Haemostasis, vol. 2, no. 12, pp. 2223–2230, 2004.
[25]  K. Eto, R. Murphy, S. W. Kerrigan et al., “Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12819–12824, 2002.
[26]  J. R. Crittenden, W. Bergmeier, Y. Zhang et al., “CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation,” Nature Medicine, vol. 10, no. 9, pp. 982–986, 2004.
[27]  B. Bernardi, G. F. Guidetti, F. Campus et al., “The small GTPase Rap1b regulates the cross talk between platelet integrin α2β1 and integrin αIIbβ 3,” Blood, vol. 107, no. 7, pp. 2728–2735, 2006.
[28]  L. Stefanini, R. C. Roden, and W. Bergmeier, “CalDAG-GEFI is at the nexus of calcium-dependent platelet activation,” Blood, vol. 114, no. 12, pp. 2506–2514, 2009.
[29]  J. Schultess, O. Danielewski, and A. P. Smolenski, “Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets,” Blood, vol. 105, no. 8, pp. 3185–3192, 2005.
[30]  M. J. Lorenowicz, J. van Gils, M. de Boer, P. L. Hordijk, and M. Fernandez-Borja, “Epac1-Rap1 signaling regulates monocyte adhesion and chemotaxis,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1542–1552, 2006.
[31]  M. Hoffmeister, P. Riha, O. Neumüller, O. Danielewski, J. Schultess, and A. P. Smolenski, “Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating protein Rap1GAP2 in platelets,” The Journal of Biological Chemistry, vol. 283, no. 4, pp. 2297–2306, 2008.
[32]  K. A. Reedquist, E. Ross, E. A. Koop et al., “The small GTPase, Rap1, mediates CD31-induced integrin adhesion,” Journal of Cell Biology, vol. 148, no. 6, pp. 1151–1158, 2000.
[33]  E. Caron, A. J. Self, and A. Hall, “The GTPase rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators,” Current Biology, vol. 10, no. 16, pp. 974–978, 2000.
[34]  K. Katagiri, M. Hattori, N. Minato, S. K. Irie, K. Takatsu, and T. Kinashi, “Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase,” Molecular and Cellular Biology, vol. 20, no. 6, pp. 1956–1969, 2000.
[35]  J. M. Enserink, L. S. Price, T. Methi et al., “The cAMP-Epac-Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through, the α3β1 integrin but not the α6β4 integrin,” The Journal of Biological Chemistry, vol. 279, no. 43, pp. 44889–44896, 2004.
[36]  R. J. Faull and M. H. Ginsberg, “Inside-out signaling through integrins,” Journal of the American Society of Nephrology, vol. 7, no. 8, pp. 1091–1097, 1996.
[37]  M. Chrzanowska-Wodnicka, S. S. Smyth, S. M. Schoenwaelder, T. H. Fischer, and G. C. White, “Rap1b is required for normal platelet function and hemostasis in mice,” Journal of Clinical Investigation, vol. 115, no. 3, pp. 680–687, 2005.
[38]  M. Stolla, L. Stefanini, R. C. Roden et al., “The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: Implications for antiplatelet therapy,” Blood, vol. 117, no. 3, pp. 1005–1013, 2011.
[39]  S. Grüner, M. Prostredna, V. Schulte et al., “Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo,” Blood, vol. 102, no. 12, pp. 4021–4027, 2003.
[40]  A. Bertoni, S. Tadokoro, K. Eto et al., “Relationships between Rap1b, affinity modulation of integrin αIIbβ3 and the actin cytoskeleton,” The Journal of Biological Chemistry, vol. 277, no. 28, pp. 25715–25721, 2002.
[41]  D. A. Calderwood, R. Zent, R. Grant, D. J. G. Rees, R. O. Hynes, and M. H. Ginsberg, “The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation,” The Journal of Biological Chemistry, vol. 274, no. 40, pp. 28071–28074, 1999.
[42]  S. Tadokoro, S. J. Shattil, K. Eto et al., “Talin binding to integrin β tails: a final common step in integrin activation,” Science, vol. 302, no. 5642, pp. 103–106, 2003.
[43]  D. S. Harburger, M. Bouaouina, and D. A. Calderwood, “Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects,” The Journal of Biological Chemistry, vol. 284, no. 17, pp. 11485–11497, 2009.
[44]  J. Han, C. J. Lim, N. Watanabe, et al., “Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3,” Current Biology, vol. 16, no. 18, pp. 1796–1806, 2006.
[45]  E. M. Lafuente, A. A. F. L. van Puijenbroek, M. Krause et al., “RIAM, an Ena/VASP and profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion,” Developmental Cell, vol. 7, no. 4, pp. 585–595, 2004.
[46]  N. Watanabe, L. Bodin, M. Pandey et al., “Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbβ3,” Journal of Cell Biology, vol. 181, no. 7, pp. 1211–1222, 2008.
[47]  S. M. Cifuni, D. D. Wagner, and W. Bergmeier, “CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets,” Blood, vol. 112, no. 5, pp. 1696–1703, 2008.
[48]  S. M. Jung and M. Moroi, “Platelets interact with soluble and insoluble collagens through characteristically different reactions,” The Journal of Biological Chemistry, vol. 273, no. 24, pp. 14827–14837, 1998.
[49]  O. Inoue, K. Suzuki-Inoue, W. L. Dean, J. Frampton, and S. P. Watson, “Integrin α2β1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCγ2,” Journal of Cell Biology, vol. 160, no. 5, pp. 769–780, 2003.
[50]  H. Chen and M. L. Kahn, “Reciprocal signaling by integrin and nonintegrin receptors during collagen activation of platelets,” Molecular and Cellular Biology, vol. 23, no. 14, pp. 4764–4777, 2003.
[51]  Z. Wang, S. P. Holly, M. K. Larson et al., “Rap1b is critical for glycoprotein VI-mediated but not ADP receptor-mediated α2β1 activation,” Journal of Thrombosis and Haemostasis, vol. 7, no. 4, pp. 693–700, 2009.
[52]  W. Bergmeier, T. Goerge, H. W. Wang et al., “Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III,” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1699–1707, 2007.
[53]  L. Stefanini, Y. Boulaftali, T. D. Ouellette, et al., “Rap1-Rac1 circuits potentiate platelet activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 2, pp. 434–441, 2012.
[54]  H. K. Nieuwenhuis, J. W. N. Akkerman, W. P. M. Houdijk, and J. J. Sixma, “Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia,” Nature, vol. 318, no. 6045, pp. 470–472, 1985.
[55]  B. Kehrel, “Platelet-collagen interactions,” Seminars in Thrombosis and Hemostasis, vol. 21, no. 2, pp. 123–129, 1995.
[56]  J. Emsley, C. G. Knight, R. W. Farndale, M. J. Barnes, and R. C. Liddington, “Structural basis of collagen recognition by integrin α2β1,” Cell, vol. 101, no. 1, pp. 47–56, 2000.
[57]  P. R. M. Siljander, S. Hamaia, A. R. Peachey et al., “Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens,” The Journal of Biological Chemistry, vol. 279, no. 46, pp. 47763–47772, 2004.
[58]  N. Raynal, S. W. Hamaia, P. R. M. Siljander et al., “Use of synthetic peptides to locate novel integrin α2β1-binding motifs in human collagen III,” The Journal of Biological Chemistry, vol. 281, no. 7, pp. 3821–3831, 2006.
[59]  M. Schaff, N. Receveur, C. Bourdon et al., “Novel function of tenascin-C, a matrix protein relevant to atherosclerosis, in platelet recruitment and activation under flow,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 1, pp. 117–124, 2011.
[60]  G. Guidetti, A. Bertoni, M. Viola, E. Tira, C. Balduini, and M. Torti, “The small proteoglycan decorin supports adhesion and activation of human platelets,” Blood, vol. 100, no. 5, pp. 1707–1714, 2002.
[61]  G. F. Guidetti, B. Bernardi, A. Consonni et al., “Integrin α2β1 induces phosphorylation-dependent and phosphorylation-independent activation of phospholipase Cγ2 in platelets: role of Src kinase and Rac GTPase,” Journal of Thrombosis and Haemostasis, vol. 7, no. 7, pp. 1200–1206, 2009.
[62]  A. Consonni, L. Cipolla, G. Guidetti, et al., “Role and regulation of phosphatidylinositol 3-kinase beta in platelet integrin alpha2beta1 signaling,” Blood, vol. 119, no. 3, pp. 847–856, 2012.
[63]  D. Woulfe, H. Jiang, R. Mortensen, J. Yang, and L. F. Brass, “Activation of Rap1B by Gi family members in platelets,” The Journal of Biological Chemistry, vol. 277, no. 26, pp. 23382–23390, 2002.
[64]  P. Lova, S. Paganini, E. Hirsch et al., “A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 131–138, 2003.
[65]  I. Canobbio, L. Stefanini, L. Cipolla et al., “Genetic evidence for a predominant role of PI3Kβ catalytic activity in ITAM- and integrin-mediated signaling in platelets,” Blood, vol. 114, no. 10, pp. 2193–2196, 2009.
[66]  O. Berlanga, R. Bobe, M. Becker et al., “Expression of the collagen receptor glycoprotein VI during megakaryocyte differentiation,” Blood, vol. 96, no. 8, pp. 2740–2745, 2000.
[67]  B. Nieswandt, W. Bergmeier, V. Schulte, K. Rackebrandt, J. E. Gessner, and H. Zirngibl, “Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRγ chain,” The Journal of Biological Chemistry, vol. 275, no. 31, pp. 23998–24002, 2000.
[68]  K. L. Sarratt, H. Chen, M. M. Zutter, S. A. Santoro, D. A. Hammer, and M. L. Kahn, “GPVI and α2β1 play independent critical roles during platelet adhesion and aggregate formation to collagen under flow,” Blood, vol. 106, no. 4, pp. 1268–1277, 2005.
[69]  S. P. Watson, J. M. Auger, O. J. T. McCarty, and A. C. Pearce, “GPVI and integrin αIIbβ3 signaling in platelets,” Journal of Thrombosis and Haemostasis, vol. 3, no. 8, pp. 1752–1762, 2005.
[70]  T. Ichinohe, H. Takayama, Y. Ezumi et al., “Collagen-stimulated activation of Syk but not c-Src is severely compromised in human platelets lacking membrane glycoprotein VI,” The Journal of Biological Chemistry, vol. 272, no. 1, pp. 63–68, 1997.
[71]  K. Kato, T. Kanaji, S. Russell et al., “The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion,” Blood, vol. 102, no. 5, pp. 1701–1707, 2003.
[72]  M. Moroi, S. M. Jung, M. Okuma, and K. Shinmyozu, “A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion,” Journal of Clinical Investigation, vol. 84, no. 5, pp. 1440–1445, 1989.
[73]  H. Kojima, M. Moroi, S. M. Jung et al., “Characterization of a patient with glycoprotein (GP) VI deficiency possessing neither anti-GPVI autoantibody nor genetic aberration,” Journal of Thrombosis and Haemostasis, vol. 4, no. 11, pp. 2433–2442, 2006.
[74]  B. Nieswandt, V. Schulte, W. Bergmeier et al., “Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice,” Journal of Experimental Medicine, vol. 193, no. 4, pp. 459–469, 2001.
[75]  T. Nakamura, J. I. Kambayashi, M. Okuma, and N. N. Tandon, “Activation of the GP IIb-IIIa complex induced by platelet adhesion to collagen is mediated by both α2β1 integrin and GP VI,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 11897–11903, 1999.
[76]  T. M. Quinton, F. Ozdener, C. Dangelmaier, J. L. Daniel, and S. P. Kunapuli, “Glycoprotein VI-mediated platelet fibrinogen receptor activation occurs through calcium-sensitive and PKC-sensitive pathways without a requirement for secreted ADP,” Blood, vol. 99, no. 9, pp. 3228–3234, 2002.
[77]  M. K. Larson, H. Chen, M. L. Kahn et al., “Identification of P2Y12-dependent and -independent mechanisms of glycoprotein VI-mediated Rap1 activation in platelets,” Blood, vol. 101, no. 4, pp. 1409–1415, 2003.
[78]  K. Gilio, I. C. A. Munnix, P. Mangin et al., “Non-redundant roles of phosphoinositide 3-kinase isoforms α and β in glycoprotein VI-induced platelet signaling and thrombus formation,” The Journal of Biological Chemistry, vol. 284, no. 49, pp. 33750–33762, 2009.
[79]  G. Zhang, B. Xiang, and S. Ye, “Distinct roles for Rap1b protein in platelet secretion and integrin alphaIIbbeta3 outside-in signaling,” The Journal of Biological Chemistry, vol. 286, no. 45, pp. 39466–39477, 2011.
[80]  Y. Ohba, N. Mochizuki, K. Matsuo et al., “Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade,” Molecular and Cellular Biology, vol. 20, no. 16, pp. 6074–6083, 2000.
[81]  B. Savage, E. Saldívar, and Z. M. Ruggeri, “Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor,” Cell, vol. 84, no. 2, pp. 289–297, 1996.
[82]  P. Thiagarajan and K. L. Kelly, “Exposure of binding sites for vitronectin on platelets following stimulation,” The Journal of Biological Chemistry, vol. 263, no. 6, pp. 3035–3038, 1988.
[83]  M. H. Ginsberg, J. Forsyth, and A. Lightsey, “Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets,” Journal of Clinical Investigation, vol. 71, no. 3, pp. 619–624, 1983.
[84]  J. Karczewski, K. A. Knudsen, L. Smith, A. Murphy, V. L. Rothman, and G. P. Tuszynski, “The interaction of thrombospondin with platelet glycoprotein GPIIb-IIIa,” The Journal of Biological Chemistry, vol. 264, no. 35, pp. 21322–21326, 1989.
[85]  Z. M. Ruggeri, “Mechanisms initiating platelet thrombus formation,” Thrombosis and Haemostasis, vol. 78, no. 1, pp. 611–616, 1997.
[86]  H. J. Weiss, V. T. Turitto, and H. R. Baumgartner, “Further evidence that glycoprotein IIb-IIIa mediates platelet spreading on subendothelium,” Thrombosis and Haemostasis, vol. 65, no. 2, pp. 202–205, 1991.
[87]  S. J. Shattil and P. J. Newman, “Integrins: dynamic scaffolds for adhesion and signaling in platelets,” Blood, vol. 104, no. 6, pp. 1606–1615, 2004.
[88]  S. M. Schoenwaelder, Y. Yuan, P. Cooray, H. H. Salem, and S. P. Jackson, “Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin α(IIb)β3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots,” The Journal of Biological Chemistry, vol. 272, no. 3, pp. 1694–1702, 1997.
[89]  M. J. VanWijk, E. VanBavel, A. Sturk, and R. Nieuwland, “Microparticles in cardiovascular diseases,” Cardiovascular Research, vol. 59, no. 2, pp. 277–287, 2003.
[90]  C. P. Chang, J. Zhao, T. Wiedmer, and P. J. Sims, “Contribution of platelet microparticle formation and granule secretion to the transmembrane migration of phosphatidylserine,” The Journal of Biological Chemistry, vol. 268, no. 10, pp. 7171–7178, 1993.
[91]  B. Savage, F. Almus-Jacobs, and Z. M. Ruggeri, “Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow,” Cell, vol. 94, no. 5, pp. 657–666, 1998.
[92]  Y. Wu, K. Suzuki-Inoue, K. Satoh et al., “Role of Fc receptor γ-chain in platelet glycoprotein Ib-mediated signaling,” Blood, vol. 97, no. 12, pp. 3836–3845, 2001.
[93]  A. Kasirer-Friede, M. R. Cozzi, M. Mazzucato, L. De Marco, Z. M. Ruggeri, and S. J. Shattil, “Signaling through GP Ib-IX-V activates αIIbβ3 independently of other receptors,” Blood, vol. 103, no. 9, pp. 3403–3411, 2004.
[94]  P. Lova, S. Paganini, F. Sinigaglia, C. Balduini, and M. Torti, “A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets,” The Journal of Biological Chemistry, vol. 277, no. 14, pp. 12009–12015, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133