The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. Themeasurement results are (84±40) ppm/cmand (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.
References
[1]
Ou, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the einstein-podolsky-rosen paradoxon for continuous variables. Phys. Rev. Lett. 1992, 68, 3663–3666.
[2]
Bowen, W.P.; Schnabel, R.; Lam, P.K. Experimental characterization of continuous-variable entanglement. Phys. Rev. A 2004, 69, 012304:1–012304:17.
The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 2011, 7, 962–965.
[8]
Hild, S.; Chelkowski, S.; Freise, A.; Franc, J.; Morgado, N.; Flamino, R.; DeSalvo, R. A xylophone configuration for a third-generation gravitational wave detector. Class. Quantum Grav. 2010, 27, 015003:1–015003:8.
[9]
Boyd, R.W. Nonlinear Optics; Academic Press: Waltham, MA, USA, 2008.
[10]
Vahlbruch, H.; Mehmet, M.; Chelkowski, S.; Hage, B.; Franzen, A.; Lastzka, N.; Goβler, S.; Danzmann, K.; Schnabel, R. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 2008, 100, 033602:1–033602:4.
[11]
Eberle, T.; Steinlechner, S.; Bauchrowitz, J.; H?ndchen, V.; Vahlbruch, H.; Mehmet, M.; Müller-Ebhardt, H.; Schnabel, R. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 2010, 104, 251102:1–251102:4.
[12]
Takeno, Y.; Yukawa, M.; Yonezawa, H.; Furusawa, A. Observation of -9dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Exp. 2007, 15, 4321–4327.
[13]
Ast, S.; Moghadas Nia, R.; Sch?nbeck, A.; Lastzka, N.; Steinlechner, J.; Eberle, T.; Mehmet, M.; Steinlechner, S.; Schnabel, R. High-efficiency frequency doubling of continuous-wave laser light. Opt. Lett. 2011, 36, 3467–3469.
[14]
Lastzka, N.; Steinlechner, J.; Steinlechner, S.; Schnabel, R. Measuring small absorptions by exploiting photothermal self-phase modulation. Appl. Opt. 2010, 49, 5391–5398.
[15]
Steinlechner, J.; Jensen, L.; Krüger, C.; Lastzka, N.; Steinlechner, S.; Schnabel, R. Photothermal self-phase modulation technique for absorption measurements on high-reflective coatings. Appl. Opt. 2012, 51, 1156–1161.
[16]
Fan, T.Y.; Huang, C.E.; Hu, B.Q.; Eckardt, R.C.; Fan, Y.X.; Byer, R.L.; Feigelson, R.S. Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOP04. Appl. Opt. 1987, 26, 2390–2394.
[17]
Wiechmann, W.; Kubota, S. Refractive-index temperature derivatives of potassium titanyl phosphate. Opt. Lett. 1998, 18, 1208–1210.
[18]
Bierlein, J.D.; Vanherzeele, H. Pontassium titanyl phosphate: Properties and new applications. J. Opt. Soc. Am. B 1989, 6, 622–633.
[19]
KTP Crystals for SHG. Available online: http://www.quantumtech.com/ (accessed on 28 February 2011).
[20]
Friedrich, D.; Kaufer, H.; Westphal, T.; Yamamoto, K.; Sawadsky, A.; Khalili, F.Y.; Danilishin, S.L.; Goβler, S.; Danzmann, K.; Schnabel, R. Laser interferometry with translucent and absorbing mechanical oscillators. New J. Phys. 2011, 13, 093017.
[21]
Raicol, Israel. Available online: http://www.raicol.com/ (accessed on 15 October 2012).
[22]
Black, E.D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87.
[23]
Mehmet, M.; Ast, S.; Eberle, T.; Steinlechner, S.; Vahlbruch, H.; Schnabel, R. Squeezed light at 1,550 nm with a quantum noise reduction of 12.3 dB. Opt. Exp. 2011, 19, 25763–25772.