|
Molecular Cancer 2010
ΔNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylationAbstract: We now report that phosphorylation of the p53 tumour suppressor is positively regulated by ΔNp63α in immortalised human keratinocytes. ΔNp63α depletion by RNAi reduces steady-state ATM mRNA and protein levels, and attenuates p53 Serine-15 phosphorylation. Conversely, ectopic expression of ΔNp63α in p63-null tumour cells stimulates ATM transcription and p53 Serine-15 phosphorylation. We show that ATM is a direct ΔNp63α transcriptional target and that the ΔNp63α response element localizes to the ATM promoter CCAAT sequence. Structure-function analysis revealed that the ΔNp63-specific TA2 transactivation domain mediates ATM transcription in coordination with the DNA binding and SAM domains.Germline p63 point mutations are associated with a range of ectodermal developmental disorders, and targeted p63 deletion in the skin causes premature ageing. The ΔNp63α-ATM-p53 damage-response pathway may therefore function in epithelial development, carcinogenesis and the ageing processes.p63 is the founding member of the p53 protein family, and is required for the development of limbs and epithelial structures in vertebrates [1]. The p63 gene expresses at least 6 common transcripts by utilising two distinct promoters (TA and ΔN) and alternative splicing within the 3' end of mRNA that generates α,β and γ isoforms [2]. TAp63 variants contain a p53-like TA1 transactivation domain. ΔNp63 variants lack a TA1 domain, but instead contain a unique 14 amino acid sequence that contributes to the formation of an alternative TA2 transactivation domain [3]. All p63 variants contain a DNA-binding domain and a tetramerisation domain with homology to p53. However, p63 alpha isoforms encode a C-terminal extension containing a SAM protein interaction domain, a conserved functional element found in a range of developmental proteins [4].Initial studies identified p63 as a robust biomarker for epithelial progenitor, or stem, cells [5]. However, the development of TA- and ΔN-isotype specific reagents r
|