全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficiency of k-Means and K-Medoids Algorithms for Clustering Arbitrary Data Points

Keywords: k-Means Algorithm , k-Medoids Algorithm , Cluster Analysis , Arbitrary data points

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are number of techniques proposed byseveral researchers to analyze the performance ofclustering algorithms in data mining. All thesetechniques are not suggesting good results for thechosen data sets and for the algorithms in particular.Some of the clustering algorithms are suit for somekind of input data. This research work usesarbitrarily distributed input data points to evaluatethe clustering quality and performance of two of thepartition based clustering algorithms namely k-Means and k-Medoids. To evaluate the clusteringquality, the distance between two data points aretaken for analysis. The computational time iscalculated for each algorithm in order to measure theperformance of the algorithms. The experimentalresults show that the k-Means algorithm yields thebest results compared with k-Medoids algorithm.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133